# A NOTE ON GENERALIZED DERIVATIONS AS A JORDAN HOMOMORPHISMS 

Arusha Chandrasekhar and Shailesh Kumar Tiwari


#### Abstract

Let $R$ be a prime ring of characteristic different from 2. Suppose that $F, G, H$ and $T$ are generalized derivations of $R$. Let $U$ be the Utumi quotient ring of $R$ and $C$ be the center of $U$, called the extended centroid of $R$ and let $f\left(x_{1}, \ldots, x_{n}\right)$ be a non central multilinear polynomial over $C$. If $$
\begin{aligned} & F\left(f\left(r_{1}, \ldots, r_{n}\right)\right) G\left(f\left(r_{1}, \ldots, r_{n}\right)\right)-f\left(r_{1}, \ldots, r_{n}\right) T\left(f\left(r_{1}, \ldots, r_{n}\right)\right) \\ = & H\left(f\left(r_{1}, \ldots, r_{n}\right)^{2}\right) \end{aligned}
$$ for all $r_{1}, \ldots, r_{n} \in R$, then we describe all possible forms of $F, G, H$ and $T$.


## 1. Introduction

Throughout the article, $R$ always denotes an associative prime ring with center $Z(R)$. The Utumi quotient ring of $R$ is denoted by $U$. The center of $U$ is called the extended centroid of $R$ and it is denoted by $C$. Note that the extended centroid $C$, of a prime ring $R$, is always a field. The definition and axiomatic formulation of Utumi quotient ring $U$ can be found in [3] and [8]. The Lie product of $x, y \in R$ is denoted by $[x, y]$ and $[x, y]=x y-y x$. A ring $R$ is said to be a prime ring if for any $a, b \in R, a R b=0$ implies either $a=0$ or $b=0$. Suppose $S$ is a non empty subset of $R$ and $f$ is a mapping on $R$. A mapping $f$ is called centralizing function (commuting function) on $S$ if $[f(s), s] \in Z(R)([f(s), s]=0)$ for all $s \in S$.

The study of commuting and centralizing mappings goes long back. In 1955 Divinsky [13] studied the commuting automorphism on rings. More precisely, Divinsky proved that a simple artinian ring is commutative if it has a commuting automorphism different from the identity mapping. It is natural to ask what happens if derivations behave like a centralizing functions on $R$ ? By derivation, we mean an additive mapping $d$ on $R$ such that $d(x y)=d(x) y+x d(y)$ for all $x, y \in R$. Define a mapping $d_{a}$ on $R$ by $d_{a}(x)=[a, x]$ for all $x \in R$, where

Received April 24, 2019; Accepted January 3, 2020.
2010 Mathematics Subject Classification. 16W25, 16N60.
Key words and phrases. Generalized derivations, Jordan homomorphism, multilinear polynomials, Utumi quotient ring, extended centroid.
$a \in R$ is fixed. Notice that $d_{a}$ is a derivation on $R$, called an inner derivation induced by an element $a \in R$. The derivation is called an outer derivation if it is not an inner derivation. The answer to the above question on centralizing derivations on a prime ring $R$ was given by Posner in [26]. More precisely, Posner proved that a prime ring must be commutative if it has a non zero centralizing derivation on $R$. In 1993, Brešar [6] extended the Posner's [26] result by taking two derivations. Brešar proved that if $d$ and $\delta$ are two derivations of $R$ such that $d(x) x-x \delta(x) \in Z(R)$ for all $x \in R$, then either $d=\delta=0$ or $R$ is commutative. Later on, many mathematicians extended these results on some appropriate subsets of a prime rings.

Another question that arises is what happens if $x$ is replaced with multilinear polynomials in Posner's and Brešar's results in [26] and [6], respectively. The definition of a multilinear polynomial is given below.

Let $X=\left\{x_{1}, x_{2}, \ldots\right\}$ be a countable set with non commuting variables $x_{1}, x_{2}, \ldots$. Let $\mathbb{Z}\langle X\rangle$ be the free algebra on $X$ over $\mathbb{Z}$. Let $f=f\left(x_{1}, \ldots, x_{n}\right) \in$ $\mathbb{Z}\langle X\rangle$ be a polynomial such that at least one of its monomials of highest degree has coefficient 1 . Let $R$ be a nonempty subset of a ring $A$. We say that $f$ is a polynomial identity on $R$ if $f\left(r_{1}, \ldots, r_{n}\right)=0$ for all $r_{1}, \ldots, r_{n} \in R$.
Definition. A polynomial $f=f\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}\langle X\rangle$ is said to be a multilinear if every $x_{i}, 1 \leq i \leq n$, appears exactly once in each of the monomials of $f$.

The answer to the above question was given by Lee and Shiue [22]. They proved that if $R$ is a prime ring, $f\left(x_{1}, \ldots, x_{n}\right)$ a multilinear polynomial over $C$ which is not central valued on $R$ and $d, g$ are derivations of $R$ such that

$$
d\left(f\left(x_{1}, \ldots, x_{n}\right)\right) f\left(x_{1} \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{n}\right) g\left(f\left(x_{1} \ldots, x_{n}\right)\right) \in C
$$

for all $x_{1}, \ldots, x_{n} \in R$, then either $d=0=g$ or $d=-g$ and $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued on $R$, except when $\operatorname{char}(R)=2$ and $\operatorname{dim}_{C}(R C)=4$.

An additive mapping $f$ on ring $R$ is said to be a homomorphism (or an antihomomorphism) if $f(a b)=f(a) f(b)$ (or $f(a b)=f(b) f(a))$ for all $a, b \in R$. Bell and Kappe [4], proved that if $d$ is a derivation of a prime ring $R$ such that $d$ acts as a homomorphism or as an anti-homomorphism on a non zero right ideal of $R$, then $d=0$. The one extension of derivation is a generalized derivation. The notion of generalized derivation is given first by Brešar [5]. The definition of generalized derivation is given below.
Definition. Let $R$ be a ring. A mapping $F$ on $R$ is called a generalized derivation on $R$ if there exists a derivation $d$ on $R$ such that

$$
F(x+y)=F(x)+F(y) \text { and } F(x y)=F(x) y+x d(y)
$$

for all $x, y \in R$. If $R$ is a prime or a semiprime ring, then the derivation $d$ is uniquely determined by $F$ and is called the associated derivation of $F$.

Here, we notice that every derivation is a generalized derivation but the converse need not be true in general. An example of a generalized derivation which is not a derivation is given below.

Example 1.1. Let $\mathbb{Z}$ be the set of integers. Suppose $R=\left\{\left.\left(\begin{array}{cc}x & y \\ 0 & z\end{array}\right) \right\rvert\, x, y, z \in \mathbb{Z}\right\}$. Define $d: R \rightarrow R$ as $d\left(\begin{array}{cc}x & y \\ 0 & z\end{array}\right)=\left(\begin{array}{ll}0 & y \\ 0 & 0\end{array}\right)$. Then $d$ is a derivation on $R$. Define a mapping $F$ on $R$ such that $F\left(\begin{array}{cc}x & y \\ 0 & z\end{array}\right)=\left(\begin{array}{ll}0 & y \\ 0 & z\end{array}\right)$. Then $F$ is a generalized derivation associated with a non zero derivation $d$ on $R$. Here, we see that $F$ is not a derivation on $R$.

Another example of a generalized derivation is a mapping of the form $F(x)=$ $a x+x b$ for all $x \in R$, where $a, b \in R$ is fixed. Such generalized derivations are called a generalized inner derivation. Generalized inner derivations and left multipliers are primarily studied on operator algebras. Therefore, any study from algebraic point of view might be interesting (see for example $[2,10,17,21$, $23,28]$ ).

In 2016, Tiwari et al. [29] studied the results of Bell and Kappe [4] by replacing derivation with generalized derivation on ideals of prime rings. Further, Tiwari et al. [30] extended [29] and [4] results to the case of multiplicative (generalized)-derivation on ideals of semiprime rings.

Definition. An additive mapping $f$ a ring $R$ is said to be a Jordan homomorphism if $f\left(a^{2}\right)=(f(a))^{2}$ for all $a \in R$.

It is easily seen that every homomorphism is a Jordan homomorphism but the converse need not true in general. An example of a Jordan homomorphism, which is not a homomorphism is given below.

Example 1.2. Let $R$ be a ring with involution *. Let $S=R \bigoplus R$ and $a \in$ $Z(R)$ such that $r_{1} a r_{2}=0$ for all $r_{1}, r_{2} \in R$. Define a function $f$ on $S$ by $f(r, t)=\left(a r, t^{*}\right)$ for all $r, t \in R$. Then $f$ is a Jordan homomorphism but not a homomorphism.

If $R$ satisfies $f\left(a^{2}\right)=(f(a))^{2}$ for all $a \in R$, then by linearizing this we get $f(a b+b a)=f(a) f(b)+f(b) f(a)$ for all $a, b \in R$. It implies that $f(a \circ b)=$ $f(a) \circ f(b)$ for all $a, b \in R$. If $R$ is a 2 -torsion free ring, then both properties are equivalent.

In 1956, Herstein [16] proved that if $f: R \rightarrow R^{\prime}$ is a Jordan homomorphism, where $R^{\prime}$ is a prime ring and $R$ is a ring with characteristic of $R^{\prime}$ is different from 2 and 3 , then either $f$ is a homomorphism or an anti-homomorphism. Further, Smiley [27] extended the above result and removed the restriction on characteristic not equal to 3 in the hypothesis of the Herstein's [16] theorem and proved that every Jordan homomorphism from ring $R$ onto prime ring $R^{\prime}$ of characteristic different from 2 is either homomorphism or anti-homomorphism.

On the other hand Filippis et al. in [7], proved the following. Let $R$ be a non commutative prime ring of characteristic different from 2 with Utumi quotient ring $U$ and extended centroid $C, f\left(x_{1}, \ldots, x_{n}\right)$ a multilinear polynomial over $C$ which is not an identity for $R, F$ and $G$ non zero generalized derivations of $R$. If $F(u) G(u)=0$ for all $u \in f(R)=\left\{f\left(r_{1}, \ldots, r_{n}\right) \mid r_{i} \in R\right\}$, then one of the following holds:
(i) There exist $a, c \in U$ such that $a c=0$ and $F(x)=x a, G(x)=c x$ for all $x \in R$;
(ii) $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued on $R$ and there exist $a, c \in U$ such that $a c=0$ and $F(x)=a x, G(x)=x c$ for all $x \in R$;
(iii) $f\left(x_{1}, \ldots, x_{n}\right)$ is central valued on $R$ and there exist $a, b, c, q \in U$ such that $(a+b)(c+q)=0$ and $F(x)=a x+x b, G(x)=c x+x q$ for all $x \in R$.
More recently, in 2018, Dhara [9] studied the following identities.
Let $R$ be a non commutative prime ring of characteristic different from 2 with Utumi quotient ring $U$ and extended centroid $C, f\left(x_{1}, \ldots, x_{n}\right)$ a multilinear polynomial over $C$ which is not central valued on $R, F, G$ and $H$ are generalized derivations of $R$. If $F(u) G(u)=H\left(u^{2}\right)$ for all $u=f\left(r_{1}, \ldots, r_{n}\right) \in f(R)$, then one of the following holds:
(i) there exist $a \in C$ and $b \in U$ such that $F(x)=a x, G(x)=x b$ and $H(x)=x a b$ for all $x \in R$;
(ii) there exist $a, b \in U$ such that $F(x)=x a, G(x)=b x$ and $H(x)=a b x$ for all $x \in R$ with $a b \in C$;
(iii) there exist $a \in U$ and $b \in C$ such that $F(x)=a x, G(x)=b x$ and $H(x)=a b x$ for all $x \in R$;
(iv) $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued on $R$ and one of the following holds:
(a) there exist $a, b, c, q \in U$ such that $F(x)=a x, G(x)=x b$ and $H(x)=c x+x q$ for all $x \in R$ with $a b=c+q$;
(b) there exist $a, b, c, q \in U$ such that $F(x)=x a, G(x)=b x$ and $H(x)=c x+x q$ for all $x \in R$ with $c+q=a b \in C$.

## 2. Main results

One might wonder if it is possible that a generalized derivation acts as a Jordan homomorphism on some subset of a prime ring. Following this line of investigation, our main theorem gives a complete description of the forms of generalized derivations $F, G, H$ and $T$ of a prime ring $R$, in the case when generalized derivation $F$ acts as a Jordan homomorphism. Further, our aim is to extend the results of De Filippis et al. [7], Dhara [9], Argac and De Filippis [1], Tiwari [28]. The statement of our main result is the following.

Theorem 2.1. Let $R$ be a prime ring of characteristic different from 2 and $F$, $G, H$ and $T$ generalized derivations on $R$. Let $U$ be the Utumi ring of quotients of $R$ with extended centroid $C$ and $f\left(x_{1}, \ldots, x_{n}\right)$ be a non central multilinear polynomial over $C$. If

$$
F(f(r)) G(f(r))-f(r) H(f(r))=T\left(f(r)^{2}\right)
$$

for all $r=\left(r_{1}, \ldots, r_{n}\right) \in R^{n}$, then one of the following holds:
(i) there exist $a \in C, b, b^{\prime}, c \in U$ such that $F(x)=a x, G(x)=b x+x b^{\prime}$, $H(x)=a b x-x\left(c-a b^{\prime}\right)$ and $T(x)=x c$ for all $x \in R ;$
(ii) there exist $a, b, c \in U$ such that $F(x)=x a, G(x)=b x, H(x)=a b x-x c$ and $T(x)=x c$ for all $x \in R$;
(iii) there exist $a, c \in U, b \in C$ such that $F(x)=a x, G(x)=b x, H(x)=x c$ and $T(x)=a b x-x c$ for all $x \in R$;
(iv) there exist $b, c \in U, a \in C$ such that $F(x)=a x, G(x)=x b, H(x)=x c$ and $T(x)=x(a b-c)$ for all $x \in R$;
(v) there exist $a, b, p \in U, c, \lambda \in C$ such that $F(x)=a x+x b, G(x)=c x$, $H(x)=b c x-\lambda x-x p$ and $T(x)=\lambda x+a c x+x p$ for all $x \in R$;
(vi) $f\left(r_{1}, \ldots, r_{n}\right)^{2}$ is central valued on $R$ and one of the following holds;
(a) there exist $a \in C, b, b^{\prime}, p, p^{\prime} \in U$ such that $F(x)=a x, G(x)=$ $b x+x b^{\prime}, H(x)=a b x+x a b^{\prime}-x\left(p+p^{\prime}\right)$ and $T(x)=p x+x p^{\prime}$ for all $x \in R$;
(b) there exist $a, b, p, p^{\prime} \in U$ such that $F(x)=x a, G(x)=b x, H(x)=$ $a b x-x\left(p+p^{\prime}\right)$ and $T(x)=p x+x p^{\prime}$ for all $x \in R$;
(c) there exist $a, b, c, p \in U$ such that $F(x)=a x, G(x)=x b, H(x)=$ $x c$ and $T(x)=[p, x]-x c+x a b$ for all $x \in R$;
(d) there exist $a, b, p, q \in U, c \in C$ such that $F(x)=a x+x b, G(x)=$ $c x, H(x)=c(b x+x a)-x(p+q)$ and $T(x)=p x+x q$ for all $x \in R$.

The following corollaries are immediate consequences of our Theorem 2.1.
Corollary 2.2 ([9, Main Theorem]). If we take $H=0$ in our Theorem 2.1, then we get the theorem of Dhara [9].

Corollary 2.3 ([7, Main Theorem]). If we take $H=0=T$ in our Theorem 2.1, then we get the Carini, Filippis and Gsudo [7, Main Theorem] result.

In particular, when $F=G$ and $H=0$ in our Theorem 2.1, we obtain a particular result of De Filippis and Scudo [11, Theorem 1].
Corollary 2.4. Let $R$ be a prime ring of characteristic different from 2 and $F$, $T$ generalized derivations on $R$. Let $U$ be the Utumi ring of quotients of $R$ with extended centroid $C$ and $f\left(x_{1}, \ldots, x_{n}\right)$ be a non central multilinear polynomial over C. If

$$
(F(f(r)))^{2}=T\left(f(r)^{2}\right)
$$

for all $r=\left(r_{1}, \ldots, r_{n}\right) \in R^{n}$, then one of the following holds:
(i) there exists $a \in C$ such that $F(x)=a x, T(x)=a^{2} x$ for all $x \in R$;
(ii) there exist $a \in C, b, c \in U$ such that $F(x)=a x$ and $T(x)=b x+x c$ for all $x \in R$ with $a^{2}=b+c$ and $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued on $R$.

If we take $F=T$ in Corollary 2.4, we get the following.
Corollary 2.5. Let $R$ be a prime ring with characteristic different from 2 and $F$ a generalized derivation on $R$. Let $U$ be the Utumi ring of quotients with extended centroid $C=Z(U)$ and let $f\left(x_{1}, \ldots, x_{n}\right)$ be a multilinear polynomial over $C$, which is not central valued on $R$. If $F\left(u^{2}\right)=(F(u))^{2}$ (i.e., if $F$ acts as a Jordan homomorphism) for all $u \in f(R)$, then $F(x)=x$ for all $x \in R$.

The following corollary is an immediate application of Corollary 2.5.
Corollary 2.6. Let $R$ be a prime ring with characteristic different from 2 and $F$ be a generalized derivation on $R$. Let $U$ be the Utumi ring of quotients with extended centroid $C=Z(U)$ and let $f\left(x_{1}, \ldots, x_{n}\right)$ be a multilinear polynomial over $C$, which is not central valued on $R$. If $F(u v)=F(u) F(v)$ (i.e., $F$ behaves as a homomorphism) or $F(u v)=F(v) F(u)$ (i.e., $F$ behaves as an anti-homomorphism) for all $u, v \in f(R)$, then $F(x)=x$ for all $x \in R$.

Proof. By our hypothesis, we have $F(u v)=F(u) F(v)$ for all $u, v \in f(R)$. This implies that $F\left(u^{2}\right)=(F(u))^{2}$ for all $u \in f(R)$. From Corollary 2.5, we get our conclusion. Similarly, we can show the case when $F$ ia an antihomomorphism.

In particular if we take $f(r)=x$ in Corollary 2.5, we get the following.
Corollary 2.7. Let $R$ be a non commutative prime ring with characteristic different from 2 and $F$ be a generalized derivation on $R$. Let $U$ be the Utumi ring of quotients with extended centroid $C=Z(U)$. If $F\left(u^{2}\right)=(F(u))^{2}$ for all $u \in f(R)$, then $F(x)=x$ for all $x \in R$.

If we take $T=0$ and $G=I$, the identity mapping on $R$, then we get the result of Argac and De Filippis [1]. More precisely, we have:

Corollary 2.8 ([1, Main Theorem]). Let $R$ be a prime ring with characteristic different from 2 and $U$ be its Utumi ring of quotients with extended centroid $C$. Suppose that $F$ and $G$ are two non zero generalized derivations of $R$ such that $F(u) u-u G(u)=0$ for all $u=f\left(x_{1}, \ldots, x_{n}\right) \in f(I)$, where $f\left(x_{1}, \ldots, x_{n}\right)$ is a non central multilinear polynomial over $K$ and $I$ is a non zero ideal of $R$. Then one of the following holds:
(1) there exists $a \in U$ such that $H(x)=x a$ and $G(x)=$ ax for all $x \in R$;
(2) $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued on $R$ and there exist $a, b \in U$ such that $H(x)=a x+x b$ and $G(x)=b x+x a$ for all $x \in R$.

In particular for $G=I$, the identity mapping, we have the following corollary.

Corollary 2.9. Let $R$ be a prime ring with characteristic different from 2 and $U$ be its Utumi ring of quotients with extended centroid $C=Z(U)$. Suppose that $F, H$ and $T$ are generalized derivations on $R$ and $f\left(x_{1}, \ldots, x_{n}\right)$ is a non central multilinear polynomial over $C$ such that $F(u) u-u H(u)=T\left(u^{2}\right)$ for all $u \in f(R)$, then one of the following holds.
(i) there exist $a, b, c \in U, \lambda \in C$ such that $F(x)=a x+x b, H(x)=$ $(b-\lambda) x-x c$ and $T(x)=(a+\lambda) x+x c$ for all $x \in R$;
(ii) there exist $a, b, c, p \in U$ such that $F(x)=a x+x b, H(x)=b x+x a-$ $x(c+p)$ and $T(x)=c x+x p$ for all $x \in R$ and $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued on $R$.

In particular for $F=H=T$ in Corollary 2.9, we obtain the following.
Corollary 2.10. Let $R$ be a prime ring with characteristic different from 2 and $U$ be its Utumi ring of quotients with extended centroid $C=Z(U)$. Suppose that $F$ is a generalized derivation on $R$ and $f\left(x_{1}, \ldots, x_{n}\right)$ is a non central multilinear polynomial over $C$ such that $F(u) u-u F(u)=F\left(u^{2}\right)$ for all $u \in f(R)$, then $F=0$.

An immediate corollary is obtained by taking $G=I$, the identity mapping and $T=0$ in our Theorem 2.1, which gives a particular case of Lee and Shiue [22], Brešar's [6]. Moreover by replacing $T=0, G=I$, the identity mapping and $F=H=d$, a derivation, then corollary gives a famous result of Posner [26].

Corollary 2.11. Let $R$ be a prime ring of characteristic different from 2 and $I$ be a non zero ideal of $R$. Suppose that $d$ is a non zero derivation on $R$ such that $[d(x), x]=0$ for all $x \in I$, then $R$ is commutative.

## 3. $F, G, H$ and $T$ are an inner generalized derivations

In this section we study the situation when $F, G, H$ and $T$ are generalized inner derivations of $R$. For some $a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, p^{\prime} \in U$, let $F(x)=a x+x a^{\prime}$, $G(x)=b x+x b^{\prime}, H(x)=c x+x c^{\prime}$ and $T(x)=p x+x p^{\prime}$ for all $x \in R$. Then we prove the following proposition:

Proposition 3.1. Let $R$ be a prime ring of characteristic different from 2 and $F, G, H$ and $T$ generalized inner derivations on $R$. Let $U$ be the Utumi ring of quotients of $R$ with extended centroid $C$ and $f\left(x_{1}, \ldots, x_{n}\right)$ be a non central multilinear polynomial over $C$. If

$$
F(f(r)) G(f(r))-f(r) H(f(r))=T\left(f(r)^{2}\right)
$$

for all $r=\left(r_{1}, \ldots, r_{n}\right) \in R^{n}$, then one of the following holds:
(i) there exist $a \in C, b, b^{\prime}, c \in U$ such that $F(x)=a x, G(x)=b x+x b^{\prime}$, $H(x)=a b x-x\left(c-a b^{\prime}\right)$ and $T(x)=x c$ for all $x \in R$;
(ii) there exist $a, b, c \in U$ such that $F(x)=x a, G(x)=b x, H(x)=a b x-x c$ and $T(x)=x c$ for all $x \in R$;
(iii) there exist $a, c \in U, b \in C$ such that $F(x)=a x, G(x)=b x, H(x)=x c$ and $T(x)=a b x-x c$ for all $x \in R$;
(iv) there exist $b, c \in U, a \in C$ such that $F(x)=a x, G(x)=x b, H(x)=x c$ and $T(x)=x(a b-c)$ for all $x \in R$;
(v) there exist $a, b, p \in U, c, \lambda \in C$ such that $F(x)=a x+x b, G(x)=c x$, $H(x)=b c x-\lambda x-x p$ and $T(x)=\lambda x+a c x+x p$ for all $x \in R$;
(vi) $f\left(r_{1}, \ldots, r_{n}\right)^{2}$ is central valued on $R$ and one of the following holds;
(a) there exist $a \in C, b, b^{\prime}, p, p^{\prime} \in U$ such that $F(x)=a x, G(x)=$ $b x+x b^{\prime}, H(x)=a b x+x a b^{\prime}-x\left(p+p^{\prime}\right)$ and $T(x)=p x+x p^{\prime}$ for all $x \in R$;
(b) there exist $a, b, p, p^{\prime} \in U$ such that $F(x)=x a, G(x)=b x, H(x)=$ $a b x-x\left(p+p^{\prime}\right)$ and $T(x)=p x+x p^{\prime}$ for all $x \in R$;
(c) there exist $a, b, c, p \in U$ such that $F(x)=a x, G(x)=x b, H(x)=$ xc and $T(x)=[p, x]-x c+x a b$ for all $x \in R$;
(d) there exist $a, b, p, q \in U, c \in C$ such that $F(x)=a x+x b, G(x)=$ $c x, H(x)=c(b x+x a)-x(p+q)$ and $T(x)=p x+x q$ for all $x \in R$.

To prove Proposition 3.1, we need the following results.
Lemma 3.2 ([12, Lemma 1]). Let $C$ be an infinite field and $m \geq 2$. If $A_{1}, \ldots, A_{k}$ are not scalar matrices in $M_{m}(C)$, then there exists some invertible matrix $P \in M_{m}(C)$ such that each matrix $P A_{1} P^{-1}, \ldots, P A_{k} P^{-1}$ has all non zero entries.

Proposition 3.3. Let $R=M_{m}(C), m \geq 2$, be the ring of all $m \times m$ matrices over the infinite field C. Suppose that $f\left(x_{1}, \ldots, x_{n}\right)$ is a non central multilinear polynomial over $C$ and $a, b, a^{\prime}, b^{\prime}, c, p, w \in R$ such that $a f(r)^{2} b^{\prime}+a f(r) b f(r)+$ $f(r) w f(r)+f(r) a^{\prime} f(r) b^{\prime}-f(r)^{2} c-p f(r)^{2}=0$ for all $r=\left(r_{1}, \ldots, r_{n}\right) \in f(R)$. Then one of the following holds:
(1) $a, a^{\prime} \in Z(R)$; (2) $a, b^{\prime} \in Z(R)$; (3) $b, a^{\prime} \in Z(R)$; (4) $b, b^{\prime} \in Z(R)$.

Proof. By our hypothesis, $R$ satisfies the generalized polynomial identity

$$
\begin{align*}
& a f\left(r_{1}, \ldots, r_{n}\right)^{2} b^{\prime}+a f\left(r_{1}, \ldots, r_{n}\right) b f\left(r_{1}, \ldots, r_{n}\right) \\
& +f\left(r_{1}, \ldots, r_{n}\right) w f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) a^{\prime} f\left(r_{1}, \ldots, r_{n}\right) b^{\prime}  \tag{1}\\
& -f\left(r_{1}, \ldots, r_{n}\right)^{2} c-p f\left(r_{1}, \ldots, r_{n}\right)^{2}
\end{align*}
$$

for all $r_{1}, \ldots, r_{n} \in R$. We shall prove this by contradiction. Suppose that $a \notin Z(R)$ and $b \notin Z(R)$.

Since $a \notin Z(R)$ and $b \notin Z(R)$ by Lemma 3.2 there exists a $C$-automorphism $\phi$ of $M_{m}(C)$ such that $\phi(a)$ and $\phi(b)$ have all non zero entries. Clearly $\phi(a)$, $\phi(b), \phi\left(a^{\prime}\right), \phi\left(b^{\prime}\right), \phi(w), \phi(c)$ and $\phi(p)$ must satisfy the condition (1).

Here $e_{i j}$ denotes the matrix whose $(i, j)$-entry is 1 and rest of the entries are zero. Since $f\left(x_{1}, \ldots, x_{n}\right)$ is not central, by [20] (see also [24]), there exist $s_{1}, \ldots, s_{n} \in M_{m}(C)$ and $0 \neq \gamma \in C$ such that $f\left(s_{1}, \ldots, s_{n}\right)=\gamma e_{i j}$, with $i \neq j$. Moreover, since the set $\left\{f\left(r_{1}, \ldots, r_{n}\right): r_{1}, \ldots, r_{n} \in M_{m}(C)\right\}$ is invariant under the action of all $C$-automorphisms of $M_{m}(C)$, then for any $i \neq j$ there exist $r_{1}, \ldots, r_{n} \in M_{m}(C)$ such that $f\left(r_{1}, \ldots, r_{n}\right)=e_{i j}$. Hence by (1) we have
$\phi(a) e_{i j}^{2} \phi\left(b^{\prime}\right)+\phi(a) e_{i j} \phi(b) e_{i j}+e_{i j} \phi(w) e_{i j}+e_{i j} \phi\left(a^{\prime}\right) e_{i j} \phi\left(b^{\prime}\right)-e_{i j}^{2} \phi(c)-\phi(p) e_{i j}^{2}=0$.
That is

$$
\begin{equation*}
\phi(a) e_{i j} \phi(b) e_{i j}+e_{i j} \phi(w) e_{i j}+e_{i j} \phi\left(a^{\prime}\right) e_{i j} \phi\left(b^{\prime}\right)=0 . \tag{2}
\end{equation*}
$$

Left multiplying by $e_{i j}$, we obtain $e_{i j} \phi(a) e_{i j} \phi(b) e_{i j}=0$. Thus we have

$$
\phi(a)_{j i} \phi(b)_{j i} e_{i j}=0 .
$$

This gives a contradiction, since $\phi(a)$ and $\phi(b)$ have all non zero entries. Thus we conclude that either $\phi(a)$ or $\phi(b)$ is central. This gives either $a \in C$ or $b \in C$.

Next, we assume that $a^{\prime} \notin Z(R)$ and $b^{\prime} \notin Z(R)$. Using similar arguments as above we have used, we get the equation (2). Now, right multiplying by $e_{i j}$ in the equation (2), we get

$$
e_{i j} \phi\left(a^{\prime}\right) e_{i j} \phi\left(b^{\prime}\right) e_{i j}=0
$$

a contradiction, since $\phi\left(a^{\prime}\right)$ and $\phi\left(b^{\prime}\right)$ have all non zero entries. Combining these two we get the required results.

Proposition 3.4. Let $R=M_{m}(C), m \geq 2$, be the ring of all matrices over the field $C$, with characteristic different from 2. Suppose that $f\left(x_{1}, \ldots, x_{n}\right)$ is $a$ non central multilinear polynomial over $C$ and $a, b, a^{\prime}, b^{\prime}, c, p, w \in R$ such that $a f(r)^{2} b^{\prime}+a f(r) b f(r)+f(r) w f(r)+f(r) a^{\prime} f(r) b^{\prime}-f(r)^{2} c-p f(r)^{2}=0$ for all $r=\left(r_{1}, \ldots, r_{n}\right) \in f(R)$. Then one of the following holds:
(1) $a, a^{\prime} \in Z(R)$; (2) $a, b^{\prime} \in Z(R)$; (3) $b, a^{\prime} \in Z(R)$; (4) $b, b^{\prime} \in Z(R)$.

Proof. If $C$ is an infinite field, then conclusions follow from Proposition 3.3.
Now assume $C$ is a finite field and let $K$ be an infinite extension field of $C$. Let $\bar{R}=M_{m}(K) \cong R \otimes_{C} K$. Notice that the multilinear polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ is central valued on $R$ if and only if it is central valued on $\bar{R}$. Suppose that the generalized polynomial $Q\left(r_{1}, \ldots, r_{n}\right)$ such that

$$
\begin{aligned}
Q\left(r_{1}, \ldots, r_{n}\right)= & a f\left(r_{1}, \ldots, r_{n}\right)^{2} b^{\prime}+a f\left(r_{1}, \ldots, r_{n}\right) b f\left(r_{1}, \ldots, r_{n}\right) \\
& +f\left(r_{1}, \ldots, r_{n}\right) w f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) a^{\prime} f\left(r_{1}, \ldots, r_{n}\right) b^{\prime} \\
& -f\left(r_{1}, \ldots, r_{n}\right)^{2} c-p f\left(r_{1}, \ldots, r_{n}\right)^{2}
\end{aligned}
$$

is a generalized polynomial identity for $R$.
Moreover, it is a multihomogeneous of multidegree $(2, \ldots, 2)$ in the indeterminates $r_{1}, \ldots, r_{n}$. Hence the complete linearization of $Q\left(r_{1}, \ldots, r_{n}\right)$ is a multilinear generalized polynomial $\Theta\left(r_{1}, \ldots, r_{n}, x_{1}, \ldots, x_{n}\right)$ in $2 n$ indeterminates, moreover

$$
\Theta\left(r_{1}, \ldots, r_{n}, r_{1}, \ldots, r_{n}\right)=2^{n} Q\left(r_{1}, \ldots, r_{n}\right) .
$$

It is clear that the multilinear polynomial $\Theta\left(r_{1}, \ldots, r_{n}, x_{1}, \ldots, x_{n}\right)$ is a generalized polynomial identity for both $R$ and $\bar{R}$. Since characteristic of $R$ is not two, we obtain $Q\left(r_{1}, \ldots, r_{n}\right)=0$ for all $r_{1}, \ldots, r_{n} \in \bar{R}$ and then conclusion follows from Proposition 3.3.

In view of above, we can write the following corollary.
Corollary 3.5. Let $R=M_{m}(C)$ be the ring of all $m \times m$ matrices over the field $C$, where $m \geq 2$, with characteristic different from 2. If $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ $a_{6}, a_{7} \in R$ such that $a_{1} r^{2} a_{2}+a_{1} r a_{3} r+r a_{4} r+r a_{5} r a_{2}-r^{2} a_{6}-a_{7} r^{2}=0$ for all $r \in R$, then either $a_{1} \in C$ or $a_{3} \in C$ and either $a_{5} \in C$ or $a_{2} \in C$.

Proposition 3.6. Let $R$ be a primitive ring of characteristic different from 2 with a non zero socle which is isomorphic to a dense ring of linear transformations of an infinite dimensional vector space $V$ over $C$. If $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ $a_{6}, a_{7} \in R$ such that $a_{1} r^{2} a_{2}+a_{1} r a_{3} r+r a_{4} r+r a_{5} r a_{2}-r^{2} a_{6}-a_{7} r^{2}=0$ for all $r \in R$, then either $a_{1} \in C$ or $a_{3} \in C$ and either $a_{5} \in C$ or $a_{2} \in C$.

Proof. We shall prove this proposition by contradiction. Suppose that neither $a_{1}$ nor $a_{3}$ and neither $a_{2}$ nor $a_{5}$ are in $C$. Since $\operatorname{dim}_{C}(V)$ is infinite. By Martindale's theorem [25, Theorem 3], for any $e^{2}=e \in \operatorname{soc}(R)$ we have $e R e \cong$ $M_{t}(C)$ with $t=\operatorname{dim}_{C} V e$. Since, none of $a_{1}, a_{3}$ in $C$ and none of $a_{2}$ and $a_{5}$ in $C$, there exist $h_{1}, h_{2}, h_{3}, h_{4} \in \operatorname{soc}(R)$ such that $\left[a_{1}, h_{1}\right] \neq 0,\left[a_{3}, h_{2}\right] \neq 0,\left[a_{5}, h_{3}\right] \neq$ 0 and $\left[a_{2}, h_{4}\right] \neq 0$. By Litoff's Theorem [15], there exists idempotent $e \in$ $\operatorname{soc}(R)$ such that $a_{1} h_{1}, h_{1} a_{1}, a_{3} h_{2}, h_{2} a_{3}, a_{5} h_{3}, h_{3} a_{5}, a_{2} h_{4}, h_{4} a_{2}, h_{1}, h_{2}, h_{3}, h_{4} \in$ $e R e$. Since $R$ satisfies generalized identity

$$
\begin{align*}
e\{ & \left\{a_{1} f\left(e x_{1} e, \ldots, e x_{n} e\right)^{2} a_{2}+a_{1} f\left(e x_{1} e, \ldots, e x_{n} e\right) a_{3} f\left(e x_{1} e, \ldots, e x_{n} e\right)\right. \\
& +f\left(e x_{1} e, \ldots, e x_{n} e\right) a_{4} f\left(e x_{1} e, \ldots, e x_{n} e\right) \\
& +f\left(e x_{1} e, \ldots, e x_{n} e\right) a_{5} f\left(e x_{1} e, \ldots, e x_{n} e\right) a_{2}  \tag{3}\\
& \left.-f\left(e x_{1} e, \ldots, e x_{n} e\right)^{2} a_{6}-a_{7} f\left(e x_{1} e, \ldots, e x_{n} e\right)^{2}\right\} e
\end{align*}
$$

the subring $e R e$ satisfies

$$
\begin{aligned}
& \quad e a_{1} e f\left(x_{1}, \ldots, x_{n}\right)^{2} e a_{2} e+e a_{1} e f\left(x_{1}, \ldots, x_{n}\right) e a_{3} e f\left(x_{1}, \ldots, x_{n}\right) \\
& (4) \quad+f\left(x_{1}, \ldots, x_{n}\right) e a_{4} e f\left(x_{1}, \ldots, x_{n}\right)+f\left(x_{1}, \ldots, x_{n}\right) e a_{5} e f\left(x_{1}, \ldots, x_{n}\right) e a_{2} e \\
& \quad-f\left(x_{1}, \ldots, x_{n}\right)^{2} e a_{6} e-e a_{7} e f\left(x_{1}, \ldots, x_{n}\right)^{2} .
\end{aligned}
$$

Then by the above finite dimensional case, either $e a_{1} e$ or $e a_{3} e$ and either $e a_{2} e$ or $e a_{5} e$ are central elements of $e R e$. Thus either $a_{1} h_{1}=\left(e a_{1} e\right) h_{1}=h_{1} e a_{1} e=$ $h_{1} a_{1}$ or $a_{3} h_{2}=\left(e a_{3} e\right) h_{2}=h_{2}\left(e a_{3} e\right)=h_{2} a_{3}$ and either $a_{5} h_{3}=\left(e a_{5} e\right) h_{3}=$ $h_{3}\left(e a_{5} e\right)=h_{3} a_{5}$ or $a_{2} h_{4}=\left(e a_{2} e\right) h_{4}=h_{4}\left(e a_{2} e\right)=h_{4} a_{2}$, a contradiction.

Lemma 3.7. Let $R$ be a prime ring of characteristic different from 2 with Utumi quotient ring $U$ and extended centroid $C$ and $f\left(x_{1}, \ldots, x_{n}\right)$ a multilinear polynomial over $C$, which is not central valued on $R$. Suppose that for some $a, b, a^{\prime}, b^{\prime}, c, w, p \in R$ such that $a f(r)^{2} b^{\prime}+a f(r) b f(r)+f(r) w f(r)+$ $f(r) a^{\prime} f(r) b^{\prime}-f(r)^{2} c-p f(r)^{2}=0$ for all $r=\left(r_{1}, \ldots, r_{n}\right) \in f(R)$. Then one of the following holds:
(1) $a, a^{\prime} \in Z(R)$; (2) $a, b^{\prime} \in Z(R)$; (3) $b, a^{\prime} \in Z(R)$; (4) $b, b^{\prime} \in Z(R)$.

Proof. First, we shall prove that either $a \in C$ or $b \in C$. We shall prove this by contradiction. Suppose that $a \notin C$ and $b \notin C$. By hypothesis, we have
$h\left(x_{1}, \ldots, x_{n}\right)=a f\left(r_{1}, \ldots, r_{n}\right)^{2} b^{\prime}+a f\left(r_{1}, \ldots, r_{n}\right) b f\left(r_{1}, \ldots, r_{n}\right)$

$$
\begin{align*}
& +f\left(r_{1}, \ldots, r_{n}\right) w f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) a^{\prime} f\left(r_{1}, \ldots, r_{n}\right) b^{\prime}  \tag{5}\\
& -f\left(r_{1}, \ldots, r_{n}\right)^{2} c-p f\left(r_{1}, \ldots, r_{n}\right)^{2}
\end{align*}
$$

for all $r_{1}, \ldots, r_{n} \in R$. Since $R$ and $U$ satisfy same generalized polynomial identity (GPI) (see [8]), $U$ satisfies $h\left(r_{1}, \ldots, r_{n}\right)=0_{T}$. Suppose that $h\left(r_{1}, \ldots, r_{n}\right)$ is a trivial GPI for $U$. Let $T=U *_{C} C\left\{r_{1}, \ldots, r_{n}\right\}$, the free product of $U$ and $C\left\{r_{1}, \ldots, r_{n}\right\}$, the free $C$-algebra in non commuting indeterminates $r_{1}, \ldots, r_{n}$. Then, $h\left(r_{1}, \ldots, r_{n}\right)$ is zero element in $T=U *_{C} C\left\{r_{1}, \ldots, r_{n}\right\}$. Since $a \notin C$ and $b \notin C$, the term $a f\left(r_{1}, \ldots, r_{n}\right) b f\left(r_{1}, \ldots, r_{n}\right)$ appears nontrivially in $h\left(r_{1}, \ldots, r_{n}\right)$. This gives a contradiction that is we have either $a \in C$ or $b \in C$.

Let $a \in C$. Then we shall show that either $a^{\prime} \in C$ or $b^{\prime} \in C$. Suppose that $a^{\prime} \notin C$ and $b^{\prime} \notin C$. Since $a \in C, U$ satisfies

$$
\begin{aligned}
P\left(x_{1}, \ldots, x_{n}\right)= & f\left(x_{1}, \ldots, x_{n}\right)(a b+w) f\left(x_{1}, \ldots, x_{n}\right)+f\left(x_{1}, \ldots, x_{n}\right)^{2}\left(a b^{\prime}-c\right) \\
& +f\left(x_{1}, \ldots, x_{n}\right) a^{\prime} f\left(x_{1}, \ldots, x_{n}\right) b^{\prime}-p f\left(x_{1}, \ldots, x_{n}\right)^{2}
\end{aligned}
$$

for all $x_{1}, \ldots, x_{n} \in R$. This is again a trivial GPI. Since $P\left(x_{1}, \ldots, x_{n}\right)=0_{T}$, the term $f\left(x_{1}, \ldots, x_{n}\right) a^{\prime} f\left(x_{1}, \ldots, x_{n}\right) b^{\prime}$ appears non trivially in $P\left(x_{1}, \ldots, x_{n}\right)$. This implies that either $a^{\prime} \in C$ or $b^{\prime} \in C$, a contradiction. Thus we have either $a \in C, a^{\prime} \in C$ or $a \in C, b^{\prime} \in C$, which is our conclusion either (1) or (2).

Similarly, we can show that when $b \in C$ either $a^{\prime} \in C$ or $b^{\prime} \in C$, which is our conclusion either (3) and (4).

Next, suppose that $h\left(x_{1}, \ldots, x_{n}\right)$ is a non trivial GPI for $U$. If $C$ is infinite, then we have $h\left(x_{1}, \ldots, x_{n}\right)=0$ for all $x_{1}, \ldots, x_{n} \in U \otimes_{C} \bar{C}$, where $\bar{C}$ is the algebraic closure of $C$. Since both $U$ and $U \otimes_{C} \bar{C}$ are prime and centrally closed [14, Theorems 2.5 and 3.5], we may replace $R$ by $U$ or $U \otimes_{C} \bar{C}$ according to $C$ finite or infinite. Then $R$ is centrally closed over $C$ and $h\left(x_{1}, \ldots, x_{n}\right)=0$ for all $x_{1}, \ldots, x_{n} \in R$. By Martindale's theorem [25], $R$ is then a primitive ring with non zero socle $\operatorname{soc}(R)$ and $C$ as its associated division ring. Then, by Jacobson's theorem [18, p. 75], $R$ is isomorphic to a dense ring of linear transformations of a vector space $V$ over $C$.

Assume first that $V$ is finite dimensional over $C$, say $\operatorname{dim}_{C} V=m$. By density of $R$, we have $R \cong M_{m}(C)$. Since $f\left(r_{1}, \ldots, r_{n}\right)$ is not central valued on $R, R$ must be non commutative and so $m \geq 2$. By Proposition 3.3, we get that either $a, a^{\prime} \in C$ or $a, b^{\prime} \in C$ or $b, a^{\prime} \in C$ or $b, b^{\prime} \in C$.

If $V$ is infinite dimensional over $C$, we use Proposition 3.6 to get the conclusions.

Lemma 3.8. Let $R$ be a prime ring of characteristic different from 2 with Utumi quotient ring $U$ and extended centroid $C$ and $f\left(x_{1}, \ldots, x_{n}\right)$ a multilinear polynomial over $C$, which is not central valued on $R$. Suppose that for some $a, b, c, p, q \in U$ such that $a f(r)^{2} b-f(r) c f(r)-f(r)^{2} q-p f(r)^{2}=0$ for all $r=\left(r_{1}, \ldots, r_{n}\right) \in f(R)$. Then $c \in C$.

Proof. By using similar argument as we have used above, we can get our conclusion.

Lemma 3.9 ([9, Lemma 2.9]). Let $R$ be a non commutative prime ring of $\operatorname{char}(R) \neq 2, a, b, c, c^{\prime} \in U$, let $p\left(x_{1}, \ldots, x_{n}\right)$ be any polynomial over $C$ which is not an identity for $R$. If ap $(r)+p(r) b+c p(r) c^{\prime}=0$ for all $r=\left(r_{1}, \ldots, r_{n}\right) \in R^{n}$, then one of the following holds:
(1) $b, c^{\prime} \in C$ and $a+b+c c^{\prime}=0$;
(2) $a, c \in C$ and $a+b+c c^{\prime}=0$;
(3) $a+b+c c^{\prime}=0$ and $p\left(x_{1}, \ldots, x_{n}\right)$ is a central valued on $R$.

The following Lemma is a particular case of Lemma 3 of [1].
Lemma 3.10. Let $R$ be a non commutative prime ring of characteristic different from 2 with Utumi quotient ring $U$ and extended centroid $C$ and let $f\left(x_{1}, \ldots, x_{n}\right)$ be a multilinear polynomial over $C$ which is not central valued on $R$. Suppose that there exist $a, b, c \in U$ such that $f(r) a f(r)+f(r)^{2} b-c f(r)^{2}=0$ for all $r \in R^{n}$. Then one of the following conditions holds:
(1) $b, c \in C, c-b=a=\alpha \in C$,
(2) $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued and there exists $\alpha \in C$ such that $c-b=$ $a=\alpha$.

Proof of Proposition 3.1. By our hypothesis, we have

$$
\left(a f(r)+f(r) a^{\prime}\right)\left(b f(r)+f(r) b^{\prime}\right)-f(r)\left(c f(r)+f(r) c^{\prime}\right)=p f(r)^{2}+f(r)^{2} p^{\prime}
$$

for all $r=\left(r_{1}, \ldots, r_{n}\right) \in R^{n}$. From Lemma 3.7, we get either $a, a^{\prime} \in C$ or $a, b^{\prime} \in C$ or $b, a^{\prime} \in C$ or $b, b^{\prime} \in C$. Now we will consider the following cases.
Case (I). Let $a, a^{\prime} \in C$, then $F(x)=\left(a+a^{\prime}\right) x$ for all $x \in R$. Then by the hypothesis, we have

$$
f(r)\left(\left(a+a^{\prime}\right) b-c\right) f(r)+f(r)^{2}\left(\left(a+a^{\prime}\right) b^{\prime}-c^{\prime}-p^{\prime}\right)-p f(r)^{2}=0
$$

for all $r=\left(r_{1}, \ldots, r_{n}\right) \in R^{n}$. By Lemma 3.10, we have one of the following:
(1) $p \in C,\left(a+a^{\prime}\right) b^{\prime}-c^{\prime}-p^{\prime} \in C$ and $p-\left(a+a^{\prime}\right) b^{\prime}+c^{\prime}+p^{\prime}=\left(a+a^{\prime}\right) b-c=$ $\alpha \in C$ for some $\alpha \in C$. This implies that $T(x)=x\left(p+p^{\prime}\right)$ and $c=\left(a+a^{\prime}\right) b-\alpha, c^{\prime}=\alpha-\left(p+p^{\prime}\right)+\left(a+a^{\prime}\right) b^{\prime}$. Thus, in this case we have $F(x)=\left(a+a^{\prime}\right) x, G(x)=b x+x b^{\prime}, H(x)=\left(a+a^{\prime}\right) b x-x\left(\left(p+p^{\prime}\right)-\right.$ $\left.\left(a+a^{\prime}\right) b^{\prime}\right)$ and $T(x)=x\left(p+p^{\prime}\right)$ for all $x \in R$, which is our conclusion (i);
(2) $f\left(r_{1}, \ldots, r_{n}\right)^{2}$ is central valued on $R$ and $p-\left(a+a^{\prime}\right) b^{\prime}+c^{\prime}+p^{\prime}=$ $\left(a+a^{\prime}\right) b-c=\alpha \in C$, which implies that $c=\left(a+a^{\prime}\right) b-\alpha$ and $c^{\prime}=$ $\alpha-p+\left(a+a^{\prime}\right) b^{\prime}-p^{\prime}$. Thus we have $F(x)=\left(a+a^{\prime}\right) x, G(x)=b x+x b^{\prime}$, $H(x)=\left(a+a^{\prime}\right) b x-x\left(p+p^{\prime}\right)+x\left(a+a^{\prime}\right) b^{\prime}$, which is our conclusion (vi (a)).

Case (II). Suppose that $a \in C$ and $b^{\prime} \in C$. Then we have $F(x)=x\left(a+a^{\prime}\right)$ and $G(x)=\left(b+b^{\prime}\right) x$. By the hypothesis we have

$$
f(r)\left(\left(a+a^{\prime}\right)\left(b+b^{\prime}\right)-c\right) f(r)+f(r)^{2}\left(-\left(c^{\prime}+p^{\prime}\right)\right)-p f(r)^{2}=0
$$

for all $r=\left(r_{1}, \ldots, r_{n}\right) \in R^{n}$. By Lemma 3.10, we have one of the following:
(1) $p \in C, c^{\prime}+p^{\prime} \in C$ and $p+c^{\prime}+p^{\prime}=\left(a+a^{\prime}\right)\left(b+b^{\prime}\right)-c=\alpha \in C$ for some $\alpha \in C$. This implies that $T(x)=x\left(p+p^{\prime}\right)$ and $c=\left(a+a^{\prime}\right)\left(b+b^{\prime}\right)-\alpha$, $c^{\prime}=\alpha-p-p^{\prime}$. Thus, in this case we have $F(x)=x\left(a+a^{\prime}\right), G(x)=$ $\left(b+b^{\prime}\right) x, H(x)=\left(a+a^{\prime}\right)\left(b+b^{\prime}\right) x-x\left(p+p^{\prime}\right)$ and $T(x)=x\left(p+p^{\prime}\right)$ for all $x \in R$, which is our conclusion (ii);
(2) $f\left(r_{1}, \ldots, r_{n}\right)^{2}$ is central valued on $R$ and $p+c^{\prime}+p^{\prime}=\left(a+a^{\prime}\right)\left(b+b^{\prime}\right)-c=$ $\alpha \in C$ for some $\alpha \in C$, which implies that $c=\left(a+a^{\prime}\right)\left(b+b^{\prime}\right)-\alpha$, $c^{\prime}=\alpha-p-p^{\prime}$. Thus we have $F(x)=x\left(a+a^{\prime}\right), G(x)=\left(b+b^{\prime}\right) x$, $H(x)=\left(a+a^{\prime}\right)\left(b+b^{\prime}\right) x-x\left(p+p^{\prime}\right), T(x)=p x+x p^{\prime}$ for all $x \in R$, which is our conclusion (vi (b)).
Case (III). Suppose that $b \in C, a^{\prime} \in C$. That is $F(x)=\left(a+a^{\prime}\right) x, G(x)=$ $x\left(b+b^{\prime}\right)$ for all $x \in R$. Hence, our hypothesis reduces to

$$
\left(a+a^{\prime}\right) f(r)^{2}\left(b+b^{\prime}\right)-f(r) c f(r)-f(r)^{2}\left(c^{\prime}+p^{\prime}\right)-p f(r)^{2}=0
$$

for all $r=\left(r_{1}, \ldots, r_{n}\right) \in R^{n}$. From Lemma 3.8, it gives that $c \in C$ that is $H(x)=x\left(c+c^{\prime}\right)$. Then $U$ satisfies

$$
\left(a+a^{\prime}\right) f(r)^{2}\left(b+b^{\prime}\right)-f(r)^{2}\left(c+c^{\prime}+p^{\prime}\right)-p f(r)^{2}=0
$$

for all $r=\left(r_{1}, \ldots, r_{n}\right) \in R^{n}$. By Lemma 3.9, we have one of the following:
(1) $-c-c^{\prime}-p^{\prime} \in C, b+b^{\prime} \in C$ and $-p-c-c^{\prime}-p^{\prime}+\left(a+a^{\prime}\right)\left(b+b^{\prime}\right)=0$, it implies that $-c-c^{\prime}-p^{\prime}=\lambda \in C$ and $p=\left(a+a^{\prime}\right)\left(b+b^{\prime}\right)+\lambda$. Thus in this case, we have $F(x)=\left(a+a^{\prime}\right) x, G(x)=x\left(b+b^{\prime}\right)=\left(b+b^{\prime}\right) x$, $H(x)=x\left(c+c^{\prime}\right)$ and $T(x)=p x+x p^{\prime}=\left(a+a^{\prime}\right)\left(b+b^{\prime}\right) x+\lambda x+$ $x\left(-c-c^{\prime}-\lambda\right)=\left(a+a^{\prime}\right)\left(b+b^{\prime}\right) x-x\left(c+c^{\prime}\right)$ for all $x \in R$, which is our conclusion (iii);
(2) $-p \in C, a+a^{\prime} \in C$ and $-p-c-c^{\prime}-p^{\prime}+\left(a+a^{\prime}\right)\left(b+b^{\prime}\right)=0$, it implies that $F(x)=\left(a+a^{\prime}\right) x, G(x)=x\left(b+b^{\prime}\right), H(x)=x\left(c+c^{\prime}\right)$ and $T(x)=p x+x p^{\prime}=x\left(p+p^{\prime}\right)=x\left(-c-c^{\prime}+\left(a+a^{\prime}\right)\left(b+b^{\prime}\right)\right)$ for all $x \in R$, which is our conclusion (iv);
(3) $f\left(r_{1}, \ldots, r_{n}\right)^{2}$ is central valued on $R$ and $-p-c-c^{\prime}-p^{\prime}+\left(a+a^{\prime}\right)\left(b+b^{\prime}\right)=$ 0 . In this case, we have $F(x)=\left(a+a^{\prime}\right) x, G(x)=x\left(b+b^{\prime}\right), H(x)=$ $x\left(c+c^{\prime}\right)$ and $T(x)=p x+x p^{\prime}=p x+x\left(-p-c-c^{\prime}+\left(a+a^{\prime}\right)\left(b+b^{\prime}\right)\right)=$ $[p, x]+x\left(\left(a+a^{\prime}\right)\left(b+b^{\prime}\right)-\left(c+c^{\prime}\right)\right)$ for all $x \in R$, which is our conclusion (vi (c)).
Case (IV). Suppose that $b \in C, b^{\prime} \in C$. Then we have $F(x)=a x+x a^{\prime}$, $G(x)=\left(b+b^{\prime}\right) x, H(x)=c x+x c^{\prime}$ and $T(x)=p x+x p^{\prime}$ for all $x \in R$. Thus our hypothesis reduces to

$$
\left(b+b^{\prime}\right)\left(a f(r)^{2}+f(r) a^{\prime} f(r)\right)-f(r)\left(c f(r)+f(r) c^{\prime}\right)=p f(r)^{2}+f(r)^{2} p^{\prime}
$$

for all $r=\left(r_{1}, \ldots, r_{n}\right), r_{1}, \ldots, r_{n} \in R$. This can be re-written as

$$
\left(\left(b+b^{\prime}\right) a-p\right) f(r)^{2}+f(r)\left(\left(b+b^{\prime}\right) a^{\prime}-c\right) f(r)-f(r)^{2}\left(c^{\prime}+p^{\prime}\right)=0
$$

for all $r=\left(r_{1}, \ldots, r_{n}\right), r_{1}, \ldots, r_{n} \in R$. By Lemma 3.10, we have one of the following:
(1) $-c^{\prime}-p^{\prime} \in C, p-\left(b+b^{\prime}\right) a \in C$ and $p-\left(b+b^{\prime}\right) a+c^{\prime}+p^{\prime}=\left(b+b^{\prime}\right) a^{\prime}-c=\alpha$ for some $\alpha \in C$. This implies that $c=\left(b+b^{\prime}\right) a^{\prime}-\alpha$ and $p=\gamma+\left(b+b^{\prime}\right) a$ and $c^{\prime}=-\beta-p^{\prime}$, where $-c^{\prime}-p^{\prime}=\beta$ and $p-\left(b+b^{\prime}\right) a=\gamma$ for some $\beta, \gamma \in C$. We notice that $p-\left(b+b^{\prime}\right) a+c^{\prime}+p^{\prime}=\alpha$, this gives that $\alpha+\beta=p-\left(b+b^{\prime}\right) a=\gamma$. Thus, in this case we have $F(x)=a x+x a^{\prime}$, $G(x)=\left(b+b^{\prime}\right) x, H(x)=c x+x c^{\prime}=\left(b+b^{\prime}\right) a^{\prime} x-\alpha x-x \beta-x p^{\prime}=$ $\left(b+b^{\prime}\right) a^{\prime} x-(\alpha+\beta) x-x p^{\prime}=\left(b+b^{\prime}\right) a^{\prime} x-\gamma x-x p^{\prime}$ and $T(x)=p x+x p^{\prime}=$ $\left(b+b^{\prime}\right) a x+\gamma x+x p^{\prime}$ for all $x \in R$, which is our conclusion (v);
(2) $f\left(r_{1}, \ldots, r_{n}\right)^{2}$ is central valued on $R$ and $p-\left(b+b^{\prime}\right) a+c^{\prime}+p^{\prime}=$ $\left(b+b^{\prime}\right) a^{\prime}-c=\alpha$ for some $\alpha \in C$, which implies that $c=\left(b+b^{\prime}\right) a^{\prime}-\alpha$, $c^{\prime}=\alpha-p-p^{\prime}+\left(b+b^{\prime}\right) a$. In this case, we have $F(x)=a x+x a^{\prime}$, $G(x)=\left(b+b^{\prime}\right) x, H(x)=c x+x c^{\prime}=\left(b+b^{\prime}\right) a^{\prime} x-\alpha x+\alpha x-x\left(p+p^{\prime}\right)+$ $x\left(b+b^{\prime}\right) a=\left(b+b^{\prime}\right) a^{\prime} x+x\left(b+b^{\prime}\right) a-x\left(p+p^{\prime}\right)$ and $T(x)=p x+x p^{\prime}$ for all $x \in R$, which is our conclusion (vi (d)).
This proves Proposition 3.1.
Lemma 3.11. Let $R$ be a prime ring of characteristic different from 2 and $F$, $G, H$ and $T$ generalized derivations on $R$. Let $U$ be the Utumi ring of quotients of $R$ with extended centroid $C$ and $f\left(x_{1}, \ldots, x_{n}\right)$ be a non central multilinear polynomial over $C$. If any three of $F, G, T, H$ are generalized inner derivations on $R$ such that

$$
F(f(r)) G(f(r))-f(r) H(f(r))=T\left(f(r)^{2}\right)
$$

for all $r=\left(r_{1}, \ldots, r_{n}\right) \in R^{n}$, then one of the following holds:
(i) there exist $a \in C, b, b^{\prime}, c \in U$ such that $F(x)=a x, G(x)=b x+x b^{\prime}$, $H(x)=a b x-x\left(c-a b^{\prime}\right)$ and $T(x)=x c$ for all $x \in R$;
(ii) there exist $a, b, c \in U$ such that $F(x)=x a, G(x)=b x, H(x)=a b x-x c$ and $T(x)=x c$ for all $x \in R$;
(iii) there exist $a, c \in U, b \in C$ such that $F(x)=a x, G(x)=b x, H(x)=x c$ and $T(x)=a b x-x c$ for all $x \in R$;
(iv) there exist $b, c \in U, a \in C$ such that $F(x)=a x, G(x)=x b, H(x)=x c$ and $T(x)=x(a b-c)$ for all $x \in R$;
(v) there exist $a, b, p \in U, c, \lambda \in C$ such that $F(x)=a x+x b, G(x)=c x$, $H(x)=b c x-\lambda x-x p$ and $T(x)=\lambda x+a c x+x p$ for all $x \in R$;
(vi) $f\left(r_{1}, \ldots, r_{n}\right)^{2}$ is central valued on $R$ and one of the following holds;
(a) there exist $a \in C, b, b^{\prime}, p, p^{\prime} \in U$ such that $F(x)=a x, G(x)=$ $b x+x b^{\prime}, H(x)=a b x+x a b^{\prime}-x\left(p+p^{\prime}\right)$ and $T(x)=p x+x p^{\prime}$ for all $x \in R$;
(b) there exist $a, b, p, p^{\prime} \in U$ such that $F(x)=x a, G(x)=b x, H(x)=$ $a b x-x\left(p+p^{\prime}\right)$ and $T(x)=p x+x p^{\prime}$ for all $x \in R$;
(c) there exist $a, b, c, p \in U$ such that $F(x)=a x, G(x)=x b, H(x)=$ $x c$ and $T(x)=[p, x]-x c+x a b$ for all $x \in R$;
(d) there exist $a, b, p, q \in U, c \in C$ such that $F(x)=a x+x b, G(x)=$ $c x, H(x)=c(b x+x a)-x(p+q)$ and $T(x)=p x+x q$ for all $x \in R$.

Proof. To prove this Lemma, we shall study the following cases.
Case 1. Let $F, G, H$ be generalized inner derivations and $T$ a generalized derivation on $R$. If $T$ is a generalized inner derivation on $R$, then by Proposition 3.1, we get our conclusions. Suppose that $T$ is not a generalized inner derivation on $R$. For some $a, b, u, c, p, p^{\prime}, q \in U$ such that $F(x)=a x+x b, G(x)=u x+x c$, $H(x)=p x+x p^{\prime}$ and $T(x)=q x+d(x)$, where $d$ is a derivation on $U$. If $d$ is an inner derivation, then $T$ is a generalized inner derivation, a contradiction. Thus $d$ can not be an inner derivation on $R$. Then $U$ satisfies

$$
\begin{aligned}
& a f\left(r_{1}, \ldots, r_{n}\right) u f\left(r_{1}, \ldots, r_{n}\right)+a f\left(r_{1}, \ldots, r_{n}\right)^{2} c \\
& +f\left(r_{1}, \ldots, r_{n}\right) b u f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) b f\left(r_{1}, \ldots, r_{n}\right) c \\
& -f\left(r_{1}, \ldots, r_{n}\right) p f\left(r_{1}, \ldots, r_{n}\right)-f\left(r_{1}, \ldots, r_{n}\right)^{2} p^{\prime} \\
= & q f\left(r_{1}, \ldots, r_{n}\right)^{2}+d\left(f\left(r_{1}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right) \\
& +f\left(r_{1}, \ldots, r_{n}\right) d\left(f\left(r_{1}, \ldots, r_{n}\right)\right) .
\end{aligned}
$$

By using Kharchenko's theorem [19], we can replace

$$
d\left(f\left(r_{1}, \ldots, r_{n}\right)\right)=f^{d}\left(r_{1}, \ldots, r_{n}\right)+\sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right)
$$

where $d\left(r_{i}\right)=y_{i}$ in (6), we get

$$
\begin{align*}
& a f\left(r_{1}, \ldots, r_{n}\right) u f\left(r_{1}, \ldots, r_{n}\right)+a f\left(r_{1}, \ldots, r_{n}\right)^{2} c \\
& +f\left(r_{1}, \ldots, r_{n}\right) b u f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) b f\left(r_{1}, \ldots, r_{n}\right) c \\
& -f\left(r_{1}, \ldots, r_{n}\right) p f\left(r_{1}, \ldots, r_{n}\right)-f\left(r_{1}, \ldots, r_{n}\right)^{2} p^{\prime} \\
= & q f\left(r_{1}, \ldots, r_{n}\right)^{2}+\left(f^{d}\left(r_{1}, \ldots, r_{n}\right)+\sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right)  \tag{7}\\
& +f\left(r_{1}, \ldots, r_{n}\right)\left(f^{d}\left(r_{1}, \ldots, r_{n}\right)+\sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right)\right) .
\end{align*}
$$

Then $U$ satisfies the blended component

$$
\begin{align*}
& \sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right) f\left(r_{1}, \ldots, r_{n}\right) \\
& +f\left(r_{1}, \ldots, r_{n}\right) \sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right)=0 \tag{8}
\end{align*}
$$

Substituting $y_{1}=r_{1}$ and $y_{i}=0$ for $i \geq 2$, we get $2 f\left(r_{1}, \ldots, r_{n}\right)^{2}=0$. Since characteristic of $R$ is not 2 , we get $f\left(r_{1}, \ldots, r_{n}\right)^{2}=0$, which gives a contradiction.
Case 2. Suppose that $F, G, T$ are generalized inner derivations and $H$ is a generalized derivation on $R$. By applying similar argument as we have used above(see Case 1 of Lemma 3.11), we get our conclusions.

Case 3. Suppose that $F, H, T$ are generalized inner derivations and $G$ is a generalized derivation on $R$. By applying similar argument as we have used above(see Case 1 of Lemma 3.11), we get our conclusions.
Case 4. Suppose that $G, H, T$ are generalized inner derivations and $F$ is a generalized derivation on $R$. By applying similar argument as we have used above(see Case 1 of Lemma 3.11), we get our conclusions.

Lemma 3.12. Let $R$ be a prime ring of characteristic different from 2 and $F$, $G, H$ and $T$ generalized derivations on $R$. Let $U$ be the Utumi ring of quotients of $R$ with extended centroid $C$ and $f\left(x_{1}, \ldots, x_{n}\right)$ be a non central multilinear polynomial over $C$. If two of $F, G, T, H$ are generalized inner derivations on $R$ such that

$$
F(f(r)) G(f(r))-f(r) H(f(r))=T\left(f(r)^{2}\right)
$$

for all $r=\left(r_{1}, \ldots, r_{n}\right) \in R^{n}$, then one of the following holds:
(i) there exist $a \in C, b, b^{\prime}, c \in U$ such that $F(x)=a x, G(x)=b x+x b^{\prime}$, $H(x)=a b x-x\left(c-a b^{\prime}\right)$ and $T(x)=x c$ for all $x \in R$;
(ii) there exist $a, b, c \in U$ such that $F(x)=x a, G(x)=b x, H(x)=a b x-x c$ and $T(x)=x c$ for all $x \in R$;
(iii) there exist $a, c \in U, b \in C$ such that $F(x)=a x, G(x)=b x, H(x)=x c$ and $T(x)=a b x-x c$ for all $x \in R$;
(iv) there exist $b, c \in U, a \in C$ such that $F(x)=a x, G(x)=x b, H(x)=x c$ and $T(x)=x(a b-c)$ for all $x \in R$;
(v) there exist $a, b, p \in U, c, \lambda \in C$ such that $F(x)=a x+x b, G(x)=c x$, $H(x)=b c x-\lambda x-x p$ and $T(x)=\lambda x+a c x+x p$ for all $x \in R$;
(vi) $f\left(r_{1}, \ldots, r_{n}\right)^{2}$ is central valued on $R$ and one of the following holds;
(a) there exist $a \in C, b, b^{\prime}, p, p^{\prime} \in U$ such that $F(x)=a x, G(x)=$ $b x+x b^{\prime}, H(x)=a b x+x a b^{\prime}-x\left(p+p^{\prime}\right)$ and $T(x)=p x+x p^{\prime}$ for all $x \in R$;
(b) there exist $a, b, p, p^{\prime} \in U$ such that $F(x)=x a, G(x)=b x, H(x)=$ $a b x-x\left(p+p^{\prime}\right)$ and $T(x)=p x+x p^{\prime}$ for all $x \in R$;
(c) there exist $a, b, c, p \in U$ such that $F(x)=a x, G(x)=x b, H(x)=$ $x c$ and $T(x)=[p, x]-x c+x a b$ for all $x \in R$;
(d) there exist $a, b, p, q \in U, c \in C$ such that $F(x)=a x+x b, G(x)=$ $c x, H(x)=c(b x+x a)-x(p+q)$ and $T(x)=p x+x q$ for all $x \in R$.

Proof. To prove this Lemma, we shall study the following cases.
Case 1. Suppose that $F, G$ are generalized inner derivations and $H, T$ are generalized derivations on $R$. If one of $H$ and $T$ is a generalized inner derivation on $R$, then by Lemma 3.11, we get our conclusions. Let $F(x)=a x+x b$, $G(x)=u x+x c, H(x)=p x+d_{1}(x)$ and $T(x)=q x+d_{2}(x)$, where $d_{1}, d_{2}$ are derivations on $U$ for some $a, b, u, c, p, q \in U$. Assume that $H$ and $T$ both are not generalized inner derivation on $R$, then $d_{1}$ and $d_{2}$ can not be an inner
derivations. Thus $U$ satisfies

$$
\begin{aligned}
& \quad a f\left(r_{1}, \ldots, r_{n}\right) u f\left(r_{1}, \ldots, r_{n}\right)+a f\left(r_{1}, \ldots, r_{n}\right)^{2} c \\
& \quad+f\left(r_{1}, \ldots, r_{n}\right) b u f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) b f\left(r_{1}, \ldots, r_{n}\right) c \\
& \quad-f\left(r_{1}, \ldots, r_{n}\right) p f\left(r_{1}, \ldots, r_{n}\right)-f\left(r_{1}, \ldots, r_{n}\right) d_{1}\left(f\left(r_{1}, \ldots, r_{n}\right)\right) \\
& = \\
& \quad q f\left(r_{1}, \ldots, r_{n}\right)^{2}+d_{2}\left(f\left(r_{1}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right) \\
& \quad+f\left(r_{1}, \ldots, r_{n}\right) d_{2}\left(f\left(r_{1}, \ldots, r_{n}\right)\right) .
\end{aligned}
$$

Now we shall study following two subcases:
Subcase-I. Let $d_{1}$ and $d_{2}$ be $C$-dependent modulo inner derivation of $U$. Then, for some $\alpha_{1}, \alpha_{2} \in C$ and $P \in U$ such that $\alpha_{1} d_{1}(x)+\alpha_{2} d_{2}(x)=[P, x]$ for all $x \in U$. If $\alpha_{1}=0$, then $\alpha_{2}$ can not be zero. This implies that $d_{2}$ is an inner derivation on $R$, a contradiction. Similarly, if $\alpha_{2}=0$, we get a contradiction. Now we assume $\alpha_{1}$ and $\alpha_{2}$ both are non zero. This gives $d_{1}(x)=\beta d_{2}(x)+\left[P^{\prime}, x\right]$ for all $x \in U$, where $\beta=-\alpha_{1}^{-1} \alpha_{2}$ and $P^{\prime}=\alpha_{1}^{-1} P$. Hence $U$ satisfies

$$
\begin{align*}
& \quad a f\left(r_{1}, \ldots, r_{n}\right) u f\left(r_{1}, \ldots, r_{n}\right)+a f\left(r_{1}, \ldots, r_{n}\right)^{2} c \\
& \quad+f\left(r_{1}, \ldots, r_{n}\right) b u f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) b f\left(r_{1}, \ldots, r_{n}\right) c \\
& \quad-f\left(r_{1}, \ldots, r_{n}\right) p f\left(r_{1}, \ldots, r_{n}\right)-\beta f\left(r_{1}, \ldots, r_{n}\right) d_{2}\left(f\left(r_{1}, \ldots, r_{n}\right)\right) \\
& \quad-f\left(r_{1}, \ldots, r_{n}\right)\left[P^{\prime}, f\left(r_{1}, \ldots, r_{n}\right)\right]  \tag{10}\\
& =q f\left(r_{1}, \ldots, r_{n}\right)^{2}+d_{2}\left(f\left(r_{1}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right) \\
& \quad+f\left(r_{1}, \ldots, r_{n}\right) d_{2}\left(f\left(r_{1}, \ldots, r_{n}\right)\right) .
\end{align*}
$$

By applying Kharchenko's theorem [19] to (10), $U$ satisfies the blended component

$$
\begin{align*}
& -\beta f\left(r_{1}, \ldots, r_{n}\right)\left(\sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right)\right) \\
= & \left(\sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right)  \tag{11}\\
& +f\left(r_{1}, \ldots, r_{n}\right)\left(\sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right)\right)
\end{align*}
$$

for all $r_{1}, \ldots, r_{n} \in R$. Replacing $y_{i}$ with $\left[w, r_{i}\right]$ for some $w \notin C$ in (11), we have that $U$ satisfies

$$
\begin{align*}
-\beta f\left(r_{1}, \ldots, r_{n}\right)\left[w, f\left(r_{1}, \ldots, r_{n}\right)\right]= & {\left[w, f\left(r_{1}, \ldots, r_{n}\right)\right] f\left(r_{1}, \ldots, r_{n}\right) }  \tag{12}\\
& +f\left(r_{1}, \ldots, r_{n}\right)\left[w, f\left(r_{1}, \ldots, r_{n}\right)\right]
\end{align*}
$$

for all $r_{1}, \ldots, r_{n} \in R$. This implies that
$-f\left(r_{1}, \ldots, r_{n}\right) \beta w f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right)^{2}(\beta w+w)-w f\left(r_{1}, \ldots, r_{n}\right)^{2}=0$
for all $r_{1}, \ldots, r_{n} \in R$. This gives that $\beta w \in C$. Since $\beta \neq 0$, hence it gives $w \in C$, a contradiction.

Subcase-II. Let $d_{1}$ and $d_{2}$ be $C$-independent. Then in (9) substituting the values of $d_{1}\left(f\left(r_{1}, \ldots, r_{n}\right)\right)$ and $d_{2}\left(f\left(r_{1}, \ldots, r_{n}\right)\right)$ and then applying Kharchenko's theorem [19], $U$ satisfies the blended component

$$
\begin{equation*}
f\left(r_{1}, \ldots, r_{n}\right)\left\{\sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right)\right\}=0 \tag{13}
\end{equation*}
$$

In particular for $y_{1}=r_{1}$ and $y_{2}=\cdots=y_{n}=0$, we have $f\left(r_{1}, \ldots, r_{n}\right)^{2}=0 \mathrm{a}$ contradiction.
Case 2. Suppose that $F, H$ are generalized inner derivations and $G, T$ are generalized derivations on $R$. By applying similar argument as we have used in above (see Case 1; Lemma 3.12), we get our conclusions.
Case 3. Suppose that $F, T$ are generalized inner derivations and $G, H$ are generalized derivations on $R$. By using similar argument as we have used in above (see Case 1; Lemma 3.12), we get our conclusions.
Case 4. Suppose that $G, H$ are generalized inner derivations and $F, T$ are generalized derivations on $R$. By using similar argument as we have used in above (see Case 1; Lemma 3.12), we get our conclusions.
Case 5. Suppose that $G, T$ are generalized inner derivations and $F, H$ are generalized derivations on $R$. By using similar argument as we have used in above (see Case 1; Lemma 3.12), we get our conclusions.
Case 6. Suppose that $H, T$ are generalized inner derivations and $F, G$ are generalized derivations on $R$. By applying similar argument as we have used above(see Case 1 of Lemma 3.12), we get our conclusions.

Lemma 3.13. Let $R$ be a prime ring of characteristic different from 2 and $F$, $G, H, T$ generalized derivations on $R$. Let $U$ be the Utumi ring of quotients of $R$ with extended centroid $C$ and $f\left(x_{1}, \ldots, x_{n}\right)$ be a non central multilinear polynomial over $C$. If one of $F, G, T, H$ is a generalized inner derivation on $R$ such that

$$
F(f(r)) G(f(r))-f(r) H(f(r))=T\left(f(r)^{2}\right)
$$

for all $r=\left(r_{1}, \ldots, r_{n}\right) \in R^{n}$, then one of the following holds:
(i) there exist $a \in C, b, b^{\prime}, c \in U$ such that $F(x)=a x, G(x)=b x+x b^{\prime}$, $H(x)=a b x-x\left(c-a b^{\prime}\right)$ and $T(x)=x c$ for all $x \in R$;
(ii) there exist $a, b, c \in U$ such that $F(x)=x a, G(x)=b x, H(x)=a b x-x c$ and $T(x)=x c$ for all $x \in R$;
(iii) there exist $a, c \in U, b \in C$ such that $F(x)=a x, G(x)=b x, H(x)=x c$ and $T(x)=a b x-x c$ for all $x \in R$;
(iv) there exist $b, c \in U, a \in C$ such that $F(x)=a x, G(x)=x b, H(x)=x c$ and $T(x)=x(a b-c)$ for all $x \in R$;
(v) there exist $a, b, p \in U, c, \lambda \in C$ such that $F(x)=a x+x b, G(x)=c x$, $H(x)=b c x-\lambda x-x p$ and $T(x)=\lambda x+a c x+x p$ for all $x \in R$;
(vi) $f\left(r_{1}, \ldots, r_{n}\right)^{2}$ is central valued on $R$ and one of the following holds;
(a) there exist $a \in C, b, b^{\prime}, p, p^{\prime} \in U$ such that $F(x)=a x, G(x)=$ $b x+x b^{\prime}, H(x)=a b x+x a b^{\prime}-x\left(p+p^{\prime}\right)$ and $T(x)=p x+x p^{\prime}$ for all $x \in R$;
(b) there exist $a, b, p, p^{\prime} \in U$ such that $F(x)=x a, G(x)=b x, H(x)=$ $a b x-x\left(p+p^{\prime}\right)$ and $T(x)=p x+x p^{\prime}$ for all $x \in R$;
(c) there exist $a, b, c, p \in U$ such that $F(x)=a x, G(x)=x b, H(x)=$ xc and $T(x)=[p, x]-x c+x a b$ for all $x \in R$;
(d) there exist $a, b, p, q \in U, c \in C$ such that $F(x)=a x+x b, G(x)=$ $c x, H(x)=c(b x+x a)-x(p+q)$ and $T(x)=p x+x q$ for all $x \in R$.

Proof. To prove this Lemma, we shall study the following cases.
Case 1. Suppose that $F$ is a generalized inner derivation on $R$ and $G, H, T$ are generalized derivations on $R$. Let $a, b, c, p, q \in U$ such that $F(x)=a x+x b$, $G(x)=c x+g(x), H(x)=p x+h(x)$ and $T(x)=q x+d(x)$, where $g, h, d$ are derivations on $U$. If one of $g, h, d$ is an inner, then by Lemma 3.12, we get our conclusions. Now suppose that all $h, g$ and $d$ are not inner derivations. Then $U$ satisfies

$$
\begin{align*}
& \left(a f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) b\right)\left(c f\left(r_{1}, \ldots, r_{n}\right)+g\left(f\left(r_{1}, \ldots, r_{n}\right)\right)\right) \\
& -f\left(r_{1}, \ldots, r_{n}\right) p f\left(r_{1}, \ldots, r_{n}\right)-f\left(r_{1}, \ldots, r_{n}\right) h\left(f\left(r_{1}, \ldots, r_{n}\right)\right)  \tag{14}\\
= & q f\left(r_{1}, \ldots, r_{n}\right)^{2}+d\left(f\left(r_{1}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right) \\
& +f\left(r_{1}, \ldots, r_{n}\right) d\left(f\left(r_{1}, \ldots, r_{n}\right)\right)
\end{align*}
$$

for all $r_{1}, \ldots, r_{n} \in R$. Now we shall study the following cases.
Subcase-I. Let $g, h$ and $d$ be linearly $C$-dependent modulo inner derivations. Then for some $\alpha, \beta, \gamma \in C$ such that $\alpha g(x)+\beta h(x)+\gamma d(x)=[u, x]$ for all $x \in R$ and $u \in U$. If $\alpha=0=\beta$, then $\gamma$ can not be zero. Hence, it implies that $d$ is an inner derivation, a contradiction. If $\alpha=0=\gamma$, then $\beta$ can not be zero, it gives $h$ is an inner derivation, a contradiction. If $\beta=0=\gamma$, then $\alpha$ can not be zero, gives $g$ is an inner derivation, a contradiction. Hence two of $\alpha, \beta, \gamma$ can not be zero.

If $\alpha=0, \beta \neq 0, \gamma \neq 0$, then $h(x)=\gamma^{\prime} d(x)+\left[u^{\prime}, x\right]$, where $\gamma^{\prime}=-\beta^{-1} \gamma$, $u^{\prime}=\beta^{-1} u$. Equation (14) reduces to

$$
\begin{align*}
& \left(a f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) b\right)\left(c f\left(r_{1}, \ldots, r_{n}\right)+g\left(f\left(r_{1}, \ldots, r_{n}\right)\right)\right) \\
& -f\left(r_{1}, \ldots, r_{n}\right) p f\left(r_{1}, \ldots, r_{n}\right)-\gamma^{\prime} f\left(r_{1}, \ldots, r_{n}\right) d\left(f\left(r_{1}, \ldots, r_{n}\right)\right) \\
& -f\left(r_{1}, \ldots, r_{n}\right)\left[u^{\prime}, f\left(r_{1}, \ldots, r_{n}\right)\right]  \tag{15}\\
= & q f\left(r_{1}, \ldots, r_{n}\right)^{2}+d\left(f\left(r_{1}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right) \\
& +f\left(r_{1}, \ldots, r_{n}\right) d\left(f\left(r_{1}, \ldots, r_{n}\right)\right) .
\end{align*}
$$

If $g$ and $d$ are linearly $C$-dependent modulo inner derivations, then $\alpha_{1} g(x)+$ $\alpha_{2} d(x)=\left[p^{\prime}, x\right]$ for some $\alpha_{1}, \alpha_{2} \in C, p^{\prime} \in U$. Since $g$ and $d$ are not an inner
derivations, hence $\alpha_{1}, \alpha_{2}$ can not be zero. Then $g(x)=\alpha_{2}{ }^{\prime} d(x)+\left[p^{\prime \prime}, x\right]$, where $\alpha_{2}{ }^{\prime}=-\alpha_{1}^{-1} \alpha_{2}, p^{\prime \prime}=\alpha_{1}^{-1} p^{\prime}$ and then $U$ satisfies

$$
\begin{align*}
& \left(a f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) b\right)\left(c f\left(r_{1}, \ldots, r_{n}\right)+\alpha_{2}^{\prime} d\left(f\left(r_{1}, \ldots, r_{n}\right)\right)\right. \\
& \left.+\left[p^{\prime \prime}, f\left(r_{1}, \ldots, r_{n}\right)\right]\right)-f\left(r_{1}, \ldots, r_{n}\right) p f\left(r_{1}, \ldots, r_{n}\right) \\
& -\gamma^{\prime} f\left(r_{1}, \ldots, r_{n}\right) d\left(f\left(r_{1}, \ldots, r_{n}\right)\right)-f\left(r_{1}, \ldots, r_{n}\right)\left[u^{\prime}, f\left(r_{1}, \ldots, r_{n}\right)\right]  \tag{16}\\
= & q f\left(r_{1}, \ldots, r_{n}\right)^{2}+d\left(f\left(r_{1}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right) \\
& +f\left(r_{1}, \ldots, r_{n}\right) d\left(f\left(r_{1}, \ldots, r_{n}\right)\right)
\end{align*}
$$

By applying Kharchenko's theorem [19] to (16) and then $U$ satisfies the blended component

$$
\begin{aligned}
& \left(a f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) b\right)\left(\alpha_{2}^{\prime} \sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right)\right) \\
& -\gamma^{\prime} f\left(r_{1}, \ldots, r_{n}\right) \sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right) \\
= & \sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right) f\left(r_{1}, \ldots, r_{n}\right) \\
& +f\left(r_{1}, \ldots, r_{n}\right) \sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right) .
\end{aligned}
$$

In particular for $y_{1}=r_{1}$ and $y_{i}=0$ for all $i \geq 2$, then $U$ satisfies

$$
\begin{align*}
& \alpha_{2}{ }^{\prime}\left(a f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) b\right) f\left(r_{1}, \ldots, r_{n}\right)-\gamma^{\prime} f\left(r_{1}, \ldots, r_{n}\right)^{2}  \tag{17}\\
= & 2 f\left(r_{1}, \ldots, r_{n}\right)^{2} .
\end{align*}
$$

This relation is a particular case of Proposition 3.1, hence we get our conclusions.

If $g$ and $d$ are linearly $C$-independent, then by using Kharchenko's theorem [19] to (15) and then $U$ satisfies the blended component

$$
\left(a f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) b\right) \sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right)=0
$$

where $g\left(r_{i}\right)=y_{i}$ which implies that

$$
\left(a f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) b\right) f\left(r_{1}, \ldots, r_{n}\right)=0
$$

This is a particular case of Proposition 3.1, hence we get our conclusions.
If $\beta=0$ and $\alpha \neq 0, \gamma \neq 0$, then $g(x)=\gamma_{1} d(x)+\left[u_{1}, x\right]$, where $\gamma_{1}=-\alpha^{-1} \gamma$, $u_{1}=\alpha^{-1} u$. Equation (14) gives that

$$
\begin{align*}
& \left(a f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) b\right)\left(c f\left(r_{1}, \ldots, r_{n}\right)+\gamma_{1} d\left(f\left(r_{1}, \ldots, r_{n}\right)\right)\right.  \tag{18}\\
& \left.+\left[u_{1}, f\left(r_{1}, \ldots, r_{n}\right)\right]\right)-f\left(r_{1}, \ldots, r_{n}\right) p f\left(r_{1}, \ldots, r_{n}\right)
\end{align*}
$$

$$
\begin{aligned}
& f\left(r_{1}, \ldots, r_{n}\right) h\left(f\left(r_{1}, \ldots, r_{n}\right)\right) \\
= & q f\left(r_{1}, \ldots, r_{n}\right)^{2}+d\left(f\left(r_{1}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right) \\
& +f\left(r_{1}, \ldots, r_{n}\right) d\left(f\left(r_{1}, \ldots, r_{n}\right)\right) .
\end{aligned}
$$

If $h$ and $d$ are linearly $C$-dependent modulo inner derivations, then $\alpha_{1} h(x)+$ $\alpha_{2} d(x)=\left[q^{\prime}, x\right]$ for some $\alpha_{1}, \alpha_{2} \in C, q^{\prime} \in U$. We notice that $\alpha_{1}, \alpha_{2}$ both will be non zero, otherwise we get a contradiction. This gives $h(x)=\alpha_{2}{ }^{\prime} d(x)+\left[q^{\prime \prime}, x\right]$, where $\alpha_{2}{ }^{\prime}=-\alpha_{1}^{-1} \alpha_{2}, q^{\prime \prime}=\alpha_{1}^{-1} q^{\prime}$. Hence $U$ satisfies

$$
\begin{align*}
& \left(a f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) b\right)\left(c f\left(r_{1}, \ldots, r_{n}\right)+\gamma_{1} d\left(f\left(r_{1}, \ldots, r_{n}\right)\right)\right. \\
& \left.+\left[u_{1}, f\left(r_{1}, \ldots, r_{n}\right)\right]\right)-f\left(r_{1}, \ldots, r_{n}\right) p f\left(r_{1}, \ldots, r_{n}\right) \\
& -\alpha_{2}^{\prime} f\left(r_{1}, \ldots, r_{n}\right) d\left(f\left(r_{1}, \ldots, r_{n}\right)\right)-f\left(r_{1}, \ldots, r_{n}\right)\left[q^{\prime \prime}, f\left(r_{1}, \ldots, r_{n}\right)\right]  \tag{19}\\
= & q f\left(r_{1}, \ldots, r_{n}\right)^{2}+d\left(f\left(r_{1}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right) \\
& +f\left(r_{1}, \ldots, r_{n}\right) d\left(f\left(r_{1}, \ldots, r_{n}\right)\right)
\end{align*}
$$

Applying Kharchenko's theorem [19], $U$ satisfies the blended component

$$
\begin{align*}
& \gamma_{1}\left(a f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) b\right) \sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right) \\
& -\alpha_{2}^{\prime} f\left(r_{1}, \ldots, r_{n}\right) \sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right) \\
= & \sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right) f\left(r_{1}, \ldots, r_{n}\right)  \tag{20}\\
& +f\left(r_{1}, \ldots, r_{n}\right) \sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right),
\end{align*}
$$

where $y_{i}=d\left(r_{i}\right)$. This implies that

$$
\begin{align*}
& \gamma_{1}\left(a f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) b\right) f\left(r_{1}, \ldots, r_{n}\right)-\alpha_{2}{ }^{\prime} f\left(r_{1}, \ldots, r_{n}\right)^{2}  \tag{21}\\
= & 2 f\left(r_{1}, \ldots, r_{n}\right)^{2} .
\end{align*}
$$

Since this equations similar to the equation (17), hence we get our conclusions.
If $h$ and $d$ are linearly $C$-independent, then by applying Kharchenko's theorem [19] to (18) and then $U$ satisfies the blended component

$$
f\left(r_{1}, \ldots, r_{n}\right) \sum_{i} f\left(r_{1}, \ldots, z_{i}, \ldots, r_{n}\right)=0
$$

where $z_{i}=h\left(r_{i}\right)$ which implies that $f\left(r_{1}, \ldots, r_{n}\right)^{2}=0$, a contradiction.
If $\gamma=0$ and $\alpha \neq 0, \beta \neq 0$, then $g(x)=\beta^{\prime} h(x)+\left[u^{\prime}, x\right]$, where $\beta^{\prime}=-\alpha^{-1} \beta$, $u^{\prime}=\alpha^{-1} u$. Equation (14) gives that

$$
\begin{equation*}
\left(a f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) b\right)\left(c f\left(r_{1}, \ldots, r_{n}\right)+\beta^{\prime} h\left(f\left(r_{1}, \ldots, r_{n}\right)\right)\right. \tag{22}
\end{equation*}
$$

$$
\begin{aligned}
& \left.+\left[u^{\prime}, f\left(r_{1}, \ldots, r_{n}\right)\right]\right)-f\left(r_{1}, \ldots, r_{n}\right) p f\left(r_{1}, \ldots, r_{n}\right) \\
& -f\left(r_{1}, \ldots, r_{n}\right) h\left(f\left(r_{1}, \ldots, r_{n}\right)\right) \\
= & q f\left(r_{1}, \ldots, r_{n}\right)^{2}+d\left(f\left(r_{1}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right) \\
& +f\left(r_{1}, \ldots, r_{n}\right) d\left(f\left(r_{1}, \ldots, r_{n}\right)\right)
\end{aligned}
$$

If $d$ and $h$ are linearly $C$-independent, then by using Kharchenko's theorem [19], $U$ satisfies the blended component

$$
\begin{align*}
& \sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right) f\left(r_{1}, \ldots, r_{n}\right) \\
& +f\left(r_{1}, \ldots, r_{n}\right) \sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right), \tag{23}
\end{align*}
$$

where $y_{i}=d\left(r_{i}\right)$. In particular for $y_{1}=r_{1}$ and $y_{i}=0$ for all $i=2,3, \ldots, n$, we get $2 f\left(r_{1}, \ldots, r_{n}\right)^{2}=0$. Since $\operatorname{char}(R) \neq 2$, it gives that $f\left(r_{1}, \ldots, r_{n}\right)^{2}=0$, a contradiction.

Now we shall assume the case that none of $\alpha, \beta$ and $\gamma$ is zero. Then

$$
g(x)=\beta^{\prime} h(x)+\gamma^{\prime} d(x)+\left[u^{\prime}, x\right]
$$

for all $x \in R$, where $\beta^{\prime}=-\alpha^{-1} \beta, \gamma^{\prime}=-\alpha^{-1} \gamma$ and $u^{\prime}=\alpha^{-1} u$. Then relation (14) reduces to

$$
\begin{align*}
& \left(a f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) b\right)\left(c f\left(r_{1}, \ldots, r_{n}\right)+\beta^{\prime} h\left(f\left(r_{1}, \ldots, r_{n}\right)\right)\right. \\
& \left.+\gamma^{\prime} d\left(f\left(r_{1}, \ldots, r_{n}\right)\right)+\left[u^{\prime}, f\left(r_{1}, \ldots, r_{n}\right)\right]\right) \\
& -f\left(r_{1}, \ldots, r_{n}\right) p f\left(r_{1}, \ldots, r_{n}\right)-f\left(r_{1}, \ldots, r_{n}\right) h\left(f\left(r_{1}, \ldots, r_{n}\right)\right)  \tag{24}\\
= & q f\left(r_{1}, \ldots, r_{n}\right)^{2}+d\left(f\left(r_{1}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right) \\
& +f\left(r_{1}, \ldots, r_{n}\right) d\left(f\left(r_{1}, \ldots, r_{n}\right)\right)
\end{align*}
$$

for all $r_{1}, \ldots, r_{n} \in R$. If $d$ and $h$ are linearly $C$-dependent modulo inner derivations on $U$, then for some $\alpha_{1}, \alpha_{2} \in C$ and $p^{\prime} \in U$ such that $\alpha_{1} d(x)+$ $\alpha_{2} h(x)=\left[p^{\prime}, x\right]$ for all $x \in U$. Since none of $d$ and $h$ are inner, hence $\alpha_{1}$ and $\alpha_{2}$ both are non zero. Then $h(x)=\alpha_{1}^{\prime} d(x)+\left[p^{\prime \prime}, x\right]$ for all $x \in U$, where $\alpha_{1}^{\prime}=-\alpha_{2}^{-1} \alpha_{1}$ and $p^{\prime \prime}=\alpha_{2}^{-1} p^{\prime}$. Thus the equation (24) reduces to

$$
\begin{aligned}
& \left(a f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) b\right)\left(c f\left(r_{1}, \ldots, r_{n}\right)+\beta^{\prime} \alpha_{1}^{\prime} d\left(f\left(r_{1}, \ldots, r_{n}\right)\right)\right. \\
& \left.\quad+\beta^{\prime}\left[p^{\prime \prime}, f\left(r_{1}, \ldots, r_{n}\right)\right]+\gamma^{\prime} d\left(f\left(r_{1}, \ldots, r_{n}\right)\right)+\left[u^{\prime}, f\left(r_{1}, \ldots, r_{n}\right)\right]\right) \\
& \quad-f\left(r_{1}, \ldots, r_{n}\right) p f\left(r_{1}, \ldots, r_{n}\right)-\alpha_{1}^{\prime} f\left(r_{1}, \ldots, r_{n}\right) d\left(f\left(r_{1}, \ldots, r_{n}\right)\right) \\
& \quad-f\left(r_{1}, \ldots, r_{n}\right)\left[p^{\prime \prime}, f\left(r_{1}, \ldots, r_{n}\right)\right] \\
& =q f\left(r_{1}, \ldots, r_{n}\right)^{2}+d\left(f\left(r_{1}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right) \\
& \quad+f\left(r_{1}, \ldots, r_{n}\right) d\left(f\left(r_{1}, \ldots, r_{n}\right)\right)
\end{aligned}
$$

for all $r_{1}, \ldots, r_{n} \in R$. By using Kharchenko's theorem [19], we can replace $d\left(f\left(r_{1}, \ldots, r_{n}\right)\right)$ with $f^{d}\left(r_{1}, \ldots, r_{n}\right)+\sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right)$, where $d\left(r_{i}\right)=y_{i}$, then $U$ satisfies

$$
\begin{aligned}
& \left(a f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) b\right)\left(c f\left(r_{1}, \ldots, r_{n}\right)+\beta^{\prime} \alpha_{1}^{\prime}\left(f^{d}\left(r_{1}, \ldots, r_{n}\right)\right.\right. \\
& \left.+\sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right)\right)+\beta^{\prime}\left[p^{\prime \prime}, f\left(r_{1}, \ldots, r_{n}\right)\right]+\gamma^{\prime}\left(f^{d}\left(r_{1}, \ldots, r_{n}\right)\right. \\
& \left.\left.+\sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right)\right)+\left[u^{\prime}, f\left(r_{1}, \ldots, r_{n}\right)\right]\right) \\
& -f\left(r_{1}, \ldots, r_{n}\right) p f\left(r_{1}, \ldots, r_{n}\right)-\alpha_{1}^{\prime} f\left(r_{1}, \ldots, r_{n}\right)\left(f^{d}\left(r_{1}, \ldots, r_{n}\right)\right. \\
& \left.+\sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right)\right)-f\left(r_{1}, \ldots, r_{n}\right)\left[p^{\prime \prime}, f\left(r_{1}, \ldots, r_{n}\right)\right]
\end{aligned}
$$

$$
(26)=q f\left(r_{1}, \ldots, r_{n}\right)^{2}+\left(f^{d}\left(r_{1}, \ldots, r_{n}\right)+\sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right)
$$

$$
+f\left(r_{1}, \ldots, r_{n}\right)\left(f^{d}\left(r_{1}, \ldots, r_{n}\right)+\sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right)\right)
$$

Hence, $U$ satisfies the blended component

$$
\begin{align*}
& \left(\beta^{\prime} \alpha_{1}{ }^{\prime}+\gamma^{\prime}\right)\left(a f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) b\right) \sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right) \\
& -\alpha_{1}{ }^{\prime} f\left(r_{1}, \ldots, r_{n}\right) \sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right)  \tag{27}\\
= & \sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right) f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) \sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right) .
\end{align*}
$$

In particular for $y_{1}=r_{1}$ and $y_{i}=0$ for all $i \geq 2$, then $U$ satisfies

$$
\begin{align*}
& \left(\beta^{\prime} \alpha_{1}^{\prime}+\gamma^{\prime}\right)\left(a f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) b\right) f\left(r_{1}, \ldots, r_{n}\right)  \tag{28}\\
& -\alpha_{1}^{\prime} f\left(r_{1}, \ldots, r_{n}\right)^{2}=2 f\left(r_{1}, \ldots, r_{n}\right)^{2}
\end{align*}
$$

Since this is a particular case of Proposition 3.1, hence we get our conclusions.
If $d$ and $h$ are linearly $C$-independent, then by using Kharchenko's theorem [19], we have

$$
\begin{aligned}
& \left(a f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) b\right)\left(c f\left(r_{1}, \ldots, r_{n}\right)+\beta^{\prime} f^{h}\left(r_{1}, \ldots, r_{n}\right)\right. \\
& +\beta^{\prime} \sum_{i} f\left(r_{1}, \ldots, z_{i}, \ldots, r_{n}\right)+\gamma^{\prime} f^{d}\left(r_{1}, \ldots, r_{n}\right)+\gamma^{\prime} \sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right) \\
& \left.+\left[u^{\prime}, f\left(r_{1}, \ldots, r_{n}\right)\right]\right)-f\left(r_{1}, \ldots, r_{n}\right) p f\left(r_{1}, \ldots, r_{n}\right) \\
& -f\left(r_{1}, \ldots, r_{n}\right)\left(f^{h}\left(r_{1}, \ldots, r_{n}\right)+\sum_{i} f\left(r_{1}, \ldots, z_{i}, \ldots, r_{n}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
= & q f\left(r_{1}, \ldots, r_{n}\right)^{2}+\left(f^{d}\left(r_{1}, \ldots, r_{n}\right)\right. \\
& \left.+\sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right)\left(f^{d}\left(r_{1}, \ldots, r_{n}\right)\right. \\
& \left.+\sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right)\right)
\end{aligned}
$$

for all $r_{1}, \ldots, r_{n} \in R$, where $d\left(r_{i}\right)=y_{i}$ and $h\left(r_{i}\right)=z_{i}$. In particular $U$ satisfies

$$
\begin{aligned}
& \beta^{\prime}\left(a f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) b\right) \sum_{i} f\left(r_{1}, \ldots, z_{i}, \ldots, r_{n}\right) \\
& -f\left(r_{1}, \ldots, r_{n}\right) \sum_{i} f\left(r_{1}, \ldots, z_{i}, \ldots, r_{n}\right)=0
\end{aligned}
$$

In particular for $z_{1}=r_{1}$ and $z_{i}=0$ for all $i \geq 2$, then we have

$$
\beta^{\prime}\left(a f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) b\right) f\left(r_{1}, \ldots, r_{n}\right)-f\left(r_{1}, \ldots, r_{n}\right)^{2}=0
$$

This relation is a particular case of Proposition 3.1, which gives our conclusions.
Subcase-II. Let $g, h$ and $d$ be linearly $C$-independent modulo inner derivation. Then by using Kharchenko's theorem [19], the equation (14) implies that

$$
\begin{align*}
& \left(a f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) b\right)\left(c f\left(r_{1}, \ldots, r_{n}\right)+f^{g}\left(r_{1}, \ldots, r_{n}\right)\right. \\
& \left.+\sum_{i} f\left(r_{1}, \ldots, y_{i}, \ldots, r_{n}\right)\right)-f\left(r_{1}, \ldots, r_{n}\right) p f\left(r_{1}, \ldots, r_{n}\right) \\
& -f\left(r_{1}, \ldots, r_{n}\right)\left(f^{h}\left(r_{1}, \ldots, r_{n}\right)+\sum_{i} f\left(r_{1}, \ldots, z_{i}, \ldots, r_{n}\right)\right)  \tag{29}\\
= & q f\left(r_{1}, \ldots, r_{n}\right)^{2}+\left(f^{d}\left(r_{1}, \ldots, r_{n}\right)\right. \\
& \left.+\sum_{i} f\left(r_{1}, \ldots, w_{i}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right)\left(f^{d}\left(r_{1}, \ldots, r_{n}\right)\right. \\
& \left.+\sum_{i} f\left(r_{1}, \ldots, w_{i}, \ldots, r_{n}\right)\right)
\end{align*}
$$

where $g\left(r_{i}\right)=y_{i}, h\left(r_{i}\right)=z_{i}$ and $d\left(r_{i}\right)=w_{i}$. Then $U$ satisfies the blended component
$\left.\sum_{i} f\left(r_{1}, \ldots, w_{i}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) \sum_{i} f\left(r_{1}, \ldots, w_{i}, \ldots, r_{n}\right)$,
which is the same as the equation (23), hence we get our result.
Case 2. Suppose that $G$ is a generalized inner derivation and $F, H, T$ are generalized derivations on $R$. By using similar argument as we have used in above (see Case 1; Lemma 3.13), we get our conclusions.

Case 3. Suppose that $H$ is a generalized inner derivation and $F, G, T$ are generalized derivations on $R$. By using similar argument as we have used in above (see Case 1; Lemma 3.13), we get our conclusions.
Case 4. Suppose that $T$ is a generalized inner derivation and $F, G, H$ are generalized derivations on $R$. By using similar argument as we have used in above (see Case 1; Lemma 3.13), we get our conclusions.

Now we are in a position to prove our main results.
Proof of Theorem 2.1. If one of $F, G, H$ and $T$ is a generalized inner derivation, then by Lemma 3.13, we get our conclusions. Suppose that none of $F, G, H$ and $T$ is a generalized inner derivation. For some $a, b, c, p \in U$ such that $F(x)=a x+d(x), G(x)=b x+g(x), H(x)=c x+h(x)$ and $T(x)=p x+\delta(x)$, where $d, g, h, \delta$ are derivations on $U$. Then $U$ satisfies

$$
\begin{align*}
& \left(a f\left(r_{1}, \ldots, r_{n}\right)+d\left(f\left(r_{1}, \ldots, r_{n}\right)\right)\right)\left(b f\left(r_{1}, \ldots, r_{n}\right)+g\left(f\left(r_{1}, \ldots, r_{n}\right)\right)\right) \\
& -f\left(r_{1}, \ldots, r_{n}\right) c f\left(r_{1}, \ldots, r_{n}\right)-f\left(r_{1}, \ldots, r_{n}\right) h\left(f\left(r_{1}, \ldots, r_{n}\right)\right)  \tag{30}\\
= & p f\left(r_{1}, \ldots, r_{n}\right)^{2}+\delta\left(f\left(r_{1}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right) \\
& +f\left(r_{1}, \ldots, r_{n}\right) \delta\left(f\left(r_{1}, \ldots, r_{n}\right)\right) .
\end{align*}
$$

We shall study the following cases.
Case 1. Let $d, g, h$ and $\delta$ be linearly $C$-dependent modulo inner derivations on $U$. Then we have $\alpha_{1} d(x)+\alpha_{2} g(x)+\alpha_{3} h(x)+\alpha_{4} \delta(x)=[u, x]$, where $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in C$ and $u \in U$. If at a time any three coefficients are zero, then we shall get a contradiction. Now we assume two coefficients are zero.
Subcase-I. If $\alpha_{1}=0=\alpha_{2}$ and $\alpha_{3} \neq 0, \alpha_{4} \neq 0$, then we have $h(x)=$ $\alpha_{4}^{\prime} \delta(x)+\left[u^{\prime}, x\right]$, where $\alpha_{4}^{\prime}=-\alpha_{3}^{-1} \alpha_{4}, u^{\prime}=\alpha_{3}^{-1} u$. Then (30) gives that

$$
\begin{aligned}
& \left(a f\left(r_{1}, \ldots, r_{n}\right)+d\left(f\left(r_{1}, \ldots, r_{n}\right)\right)\right)\left(b f\left(r_{1}, \ldots, r_{n}\right)+g\left(f\left(r_{1}, \ldots, r_{n}\right)\right)\right) \\
& -f\left(r_{1}, \ldots, r_{n}\right) c f\left(r_{1}, \ldots, r_{n}\right)-\alpha_{4}^{\prime} f\left(r_{1}, \ldots, r_{n}\right) \delta\left(f\left(r_{1}, \ldots, r_{n}\right)\right) \\
& -f\left(r_{1}, \ldots, r_{n}\right)\left[u^{\prime}, f\left(r_{1}, \ldots, r_{n}\right)\right] \\
= & p f\left(r_{1}, \ldots, r_{n}\right)^{2}+\delta\left(f\left(r_{1}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right) \\
& +f\left(r_{1}, \ldots, r_{n}\right) \delta\left(f\left(r_{1}, \ldots, r_{n}\right)\right) .
\end{aligned}
$$

If $d, g$ and $\delta$ are linearly $C$-independent, then by applying similar argument as we have used in above (see Subcase-II, Case 1 of Lemma 3.13) we get our conclusions.

If $d, g$ and $\delta$ are linearly $C$-dependent, then by using similar argument as we have used in Subcase-I of Case 1 of Lemma 3.13, we get our conclusions.
Subcase-II. If $\alpha_{1}=0=\alpha_{3}$ and $\alpha_{2} \neq 0, \alpha_{4} \neq 0$, then by using similar argument as we have used in above (see Subcase-I, Case 1 of proof of Theorem 2.1), we get our conclusions.

Subcase-III. If $\alpha_{1}=0=\alpha_{4}$ and $\alpha_{2} \neq 0, \alpha_{3} \neq 0$, then by using similar argument as we have used in above (see Subcase-I, Case 1 of proof of Theorem 2.1), we get our conclusions.

Subcase-IV. If $\alpha_{2}=0=\alpha_{3}$ and $\alpha_{1} \neq 0, \alpha_{4} \neq 0$, then by using similar argument as we have used in above (see Subcase-I, Case 1 of proof of Theorem 2.1), we get our conclusions.

Subcase-V. If $\alpha_{2}=0=\alpha_{4}$ and $\alpha_{1} \neq 0, \alpha_{3} \neq 0$, then by using similar argument as we have used in above (see Subcase-I, Case 1 of proof of Theorem 2.1), we get our conclusions.

Subcase-VI. If $\alpha_{3}=0=\alpha_{4}$ and $\alpha_{1} \neq 0, \alpha_{2} \neq 0$, then by using similar argument as we have used in above (see Subcase-I, Case 1 of proof of Theorem 2.1), we get our conclusions.

Now we suppose that only one coefficient is zero. Then we have the following.
Subcase-VII. If $\alpha_{1}=0$ and $\alpha_{2} \neq 0, \alpha_{3} \neq 0, \alpha_{4} \neq 0$, then $g(x)=\alpha_{3}^{\prime} h(x)+$ $\alpha_{4}^{\prime} \delta(x)+\left[u^{\prime}, x\right]$, where $\alpha_{3}^{\prime}=-\alpha_{2}^{-1} \alpha_{3}, \alpha_{4}^{\prime}=-\alpha_{2}^{-1} \alpha_{4}, u^{\prime}=\alpha_{2}^{-1} u$. Then (30) gives that

$$
\begin{align*}
& \left(a f\left(r_{1}, \ldots, r_{n}\right)+d\left(f\left(r_{1}, \ldots, r_{n}\right)\right)\right)\left(b f\left(r_{1}, \ldots, r_{n}\right)+\alpha_{3}^{\prime} h\left(f\left(r_{1}, \ldots, r_{n}\right)\right)\right. \\
& \left.+\alpha_{4}^{\prime} \delta\left(f\left(r_{1}, \ldots, r_{n}\right)\right)+\left[u^{\prime}, f\left(r_{1}, \ldots, r_{n}\right)\right]\right)-f\left(r_{1}, \ldots, r_{n}\right) c f\left(r_{1}, \ldots, r_{n}\right) \\
& -f\left(r_{1}, \ldots, r_{n}\right) h\left(f\left(r_{1}, \ldots, r_{n}\right)\right)  \tag{32}\\
= & p f\left(r_{1}, \ldots, r_{n}\right)^{2}+\delta\left(f\left(r_{1}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right) \\
& +f\left(r_{1}, \ldots, r_{n}\right) \delta\left(f\left(r_{1}, \ldots, r_{n}\right)\right) .
\end{align*}
$$

If $d, h$ and $\delta$ are linearly $C$-independent, then by applying similar argument as we have used in above (see Subcase-II, Case 1 of Lemma 3.13) we get our conclusions.

If $d, h$ and $\delta$ are linearly $C$-dependent modulo inner derivations, then using parallel argument as we have used in the Subcase-I of Case 1 of Lemma 3.13, we get our conclusions.
Subcase-VIII. If $\alpha_{2}=0$ and $\alpha_{1} \neq 0, \alpha_{3} \neq 0, \alpha_{4} \neq 0$, then by using similar argument as we have used in above (see Subcase-VII, Case 1 of proof of Theorem 2.1), we get our conclusions.

Subcase-IX. If $\alpha_{3}=0$ and $\alpha_{1} \neq 0, \alpha_{2} \neq 0, \alpha_{4} \neq 0$, then by using similar argument as we have used in above (see Subcase-VII, Case 1 of proof of Theorem 2.1), we get our conclusions.

Subcase-X. If $\alpha_{4}=0$ and $\alpha_{1} \neq 0, \alpha_{2} \neq 0, \alpha_{3} \neq 0$, then by using similar argument as we have used in above (see Subcase-VII, Case 1 of proof of Theorem 2.1), we get our conclusions.

Now we consider that none of $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ is zero. It implies that $d(x)=$ $\alpha_{2}{ }^{\prime} g(x)+\alpha_{3}{ }^{\prime} h(x)+\alpha_{4}{ }^{\prime} \delta(x)+\left[u^{\prime}, x\right]$, where $\alpha_{2}{ }^{\prime}=-\alpha_{1}^{-1} \alpha_{2}, \alpha_{3}{ }^{\prime}=-\alpha_{1}^{-1} \alpha_{3}$,
$\alpha_{4}{ }^{\prime}=-\alpha_{1}^{-1} \alpha_{4}$ and $u^{\prime}=\alpha_{1}^{-1} u$ and then (30) reduces to

$$
\begin{align*}
& \left(a f\left(r_{1}, \ldots, r_{n}\right)+\alpha_{2}{ }^{\prime} g\left(f\left(r_{1}, \ldots, r_{n}\right)\right)+\alpha_{3}{ }^{\prime} h\left(f\left(r_{1}, \ldots, r_{n}\right)\right)\right. \\
& \left.+\alpha_{4}{ }^{\prime} \delta\left(f\left(r_{1}, \ldots, r_{n}\right)\right)+\left[u^{\prime}, f\left(r_{1}, \ldots, r_{n}\right)\right]\right) \\
& \left(b f\left(r_{1}, \ldots, r_{n}\right)+g\left(f\left(r_{1}, \ldots, r_{n}\right)\right)\right)  \tag{33}\\
& -f\left(r_{1}, \ldots, r_{n}\right) c f\left(r_{1}, \ldots, r_{n}\right)-f\left(r_{1}, \ldots, r_{n}\right) h\left(f\left(r_{1}, \ldots, r_{n}\right)\right) \\
= & p f\left(r_{1}, \ldots, r_{n}\right)^{2}+\delta\left(f\left(r_{1}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right) \\
& +f\left(r_{1}, \ldots, r_{n}\right) \delta\left(f\left(r_{1}, \ldots, r_{n}\right)\right) .
\end{align*}
$$

If $g, h$ and $\delta$ are linearly $C$-independent, then by applying similar argument as we have used in above (see Subcase-II, Case 1 of Lemma 3.13) we get our conclusions.

If $g, h, \delta$ are linearly $C$-dependent modulo inner derivations, then by applying similar argument as we have used in above (see Subcase-I, Case 1 of Lemma 3.13) we get our conclusions.

Case 2. Let $d, g, h, \delta$ be linearly $C$-independent. Then by using kharchenko's theorem [19] in (30), $U$ satisfies the blended component

$$
f\left(r_{1}, \ldots, r_{n}\right) \sum_{i} f\left(r_{1}, \ldots, z_{i}, \ldots, r_{n}\right)=0
$$

where $z_{i}=h\left(r_{i}\right)$, which implies that $f\left(r_{1}, \ldots, r_{n}\right)^{2}=0$, a contradiction. Hence proof of the theorem is complete.

The following corollaries are immediate consequences of our Theorem 2.1.
Corollary 3.14. Let $R$ be a prime ring with characteristic different from 2 and $U$ be its Utumi ring of quotients, extended centroid $C=Z(U)$ and $f\left(x_{1}, \ldots, x_{n}\right)$ be a non central multilinear polynomial over $C$. Suppose that $d_{1}$, $d_{2}$ and $d_{3}$ are derivations on $R$ such that $d_{1}(f(r)) d_{2}(f(r))=d_{3}\left(f(r)^{2}\right)$ for all $r=\left(r_{1}, \ldots, r_{n}\right)$, where $r_{1}, \ldots, r_{n} \in R$, then one of the following holds:
(i) $d_{1}=0=d_{3}$;
(ii) $d_{2}=0=d_{3}$;
(iii) there exists $a \in U$ such that $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued on $R$ and either $d_{1}=0=d_{2}, d_{3}(x)=[a, x]$ or $d_{2}=0, d_{3}(x)=[a, x]$ for all $x \in R$.

In particular for $F=H=T=d$, where $d$ is a derivation and $G=I$, the identity mapping on $R$ in our Theorem 2.1, we obtain the following.

Corollary 3.15. Let $R$ be a prime ring with characteristic different from 2 and $U$ be its Utumi ring of quotients, extended centroid $C=Z(U)$ and $f\left(x_{1}, \ldots, x_{n}\right)$ be a non central multilinear polynomial over $C$. Suppose that $d_{1}$ and $d_{2}$ are two derivations on $R$ such that $\left[d_{1}(f(r)), f(r)\right]=d_{2}\left(f(r)^{2}\right)$ for all $r=\left(r_{1}, \ldots, r_{n}\right)$,
where $r_{1}, \ldots, r_{n} \in R$, then either $d_{1}=0=d_{2}$ or there exists $a \in U$ such that $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued on $R$ and $d_{1}=0, d_{2}=[a, x]$ for all $x \in R$.

## References

[1] N. Argaç and V. De Filippis, Actions of generalized derivations on multilinear polynomials in prime rings, Algebra Colloq. 18 (2011), Special Issue no. 1, 955-964. https://doi.org/10.1142/S1005386711000836
[2] A. Asma, N. Rehman, and A. Shakir, On Lie ideals with derivations as homomorphisms and anti-homomorphisms, Acta Math. Hungar. 101 (2003), no. 1-2, 79-82. https:// doi.org/10.1023/B:AMHU.0000003893.61349.98
[3] K. I. Beidar, W. S. Martindale, III, and A. V. Mikhalev, Rings with generalized identities, Monographs and Textbooks in Pure and Applied Mathematics, 196, Marcel Dekker, Inc., New York, 1996.
[4] H. E. Bell and L.-C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar. 53 (1989), no. 3-4, 339-346. https://doi.org/10.1007/ BF01953371
[5] M. Brešar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991), no. 1, 89-93. https://doi.org/10.1017/ S0017089500008077
[6] , Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), no. 2, 385-394. https://doi.org/10.1006/jabr.1993. 1080
[7] L. Carini, V. De Filippis, and G. Scudo, Identities with product of generalized derivations of prime rings, Algebra Colloq. 20 (2013), no. 4, 711-720. https://doi.org/10.1142/ S1005386713000680
[8] C.-L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988), no. 3, 723-728. https://doi.org/10.2307/2046841
[9] B. Dhara, Generalized derivations acting on multilinear polynomials in prime rings, Czechoslovak Math. J. 68(143) (2018), no. 1, 95-119. https://doi.org/10.21136/CMJ. 2017.0352-16
[10] B. Dhara, S. Sahebi, and V. Rahmani, Generalized derivations as a generalization of Jordan homomorphisms acting on Lie ideals and right ideals, Math. Slovaca 65 (2015), no. 5, 963-974. https://doi.org/10.1515/ms-2015-0065
[11] V. De Filippis and G. Scudo, Generalized derivations which extend the concept of Jordan homomorphism, Publ. Math. Debrecen 86 (2015), no. 1-2, 187-212. https://doi.org/ 10.5486/PMD. 2015.7070
[12] V. De Filippis and O. M. Di Vincenzo, Vanishing derivations and centralizers of generalized derivations on multilinear polynomials, Comm. Algebra 40 (2012), no. 6, 1918-1932. https://doi.org/10.1080/00927872.2011.553859
[13] N. J. Divinsky, On commuting automorphisms of rings, Trans. Roy. Soc. Canada Sect. III 49 (1955), 19-22.
[14] T. S. Erickson, W. S. Martindale, 3rd, and J. M. Osborn, Prime nonassociative algebras, Pacific J. Math. 60 (1975), no. 1, 49-63. http://projecteuclid.org/euclid.pjm/ 1102868622
[15] C. Faith and Y. Utumi, On a new proof of Litoff's theorem, Acta Math. Acad. Sci. Hungar. 14 (1963), 369-371. https://doi.org/10.1007/BF01895723
[16] I. N. Herstein, Jordan homomorphisms, Trans. Amer. Math. Soc. 81 (1956), 331-341. https://doi.org/10.2307/1992920
[17] B. Hvala, Generalized derivations in rings, Comm. Algebra 26 (1998), no. 4, 1147-1166. https://doi.org/10.1080/00927879808826190
[18] N. Jacobson, Structure of rings, American Mathematical Society Colloquium Publications, Vol. 37. Revised edition, American Mathematical Society, Providence, RI, 1964.
[19] V. K. Kharchenko, Differential identities of prime rings, Algebra i Logika 17 (1978), no. 2, 220-238, 242-243.
[20] T.-K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 1, 27-38.
[21] , Generalized derivations of left faithful rings, Comm. Algebra 27 (1999), no. 8, 4057-4073. https://doi.org/10.1080/00927879908826682
[22] T.-K. Lee and W.-K. Shiue, Derivations cocentralizing polynomials, Taiwanese J. Math. 2 (1998), no. 4, 457-467. https://doi.org/10.11650/twjm/1500407017
[23] , Identities with generalized derivations, Comm. Algebra 29 (2001), no. 10, 44374450. https://doi.org/10.1081/AGB-100106767
[24] U. Leron, Nil and power-central polynomials in rings, Trans. Amer. Math. Soc. 202 (1975), 97-103. https://doi.org/10.2307/1997300
[25] W. S. Martindale, III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584. https://doi.org/10.1016/0021-8693(69)90029-5
[26] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100. https://doi.org/10.2307/2032686
[27] M. F. Smiley, Jordan homomorphisms onto prime rings, Trans. Amer. Math. Soc. 84 (1957), 426-429. https://doi.org/10.2307/1992823
[28] S. K. Tiwari, Generalized derivations with multilinear polynomials in prime rings, Comm. Algebra 46 (2018), no. 12, 5356-5372. https://doi.org/10.1080/00927872. 2018. 1468899
[29] S. K. Tiwari, R. K. Sharma, and B. Dhara, Identities related to generalized derivation on ideal in prime rings, Beitr. Algebra Geom. 57 (2016), no. 4, 809-821. https://doi. org/10.1007/s13366-015-0262-6
[30] , Multiplicative (generalized)-derivation in semiprime rings, Beitr. Algebra Geom. 58 (2017), no. 1, 211-225. https://doi.org/10.1007/s13366-015-0279-x

Arusha Chandrasekhar
Department of Mathematics
Indian Institute of Science Education and Research, Bhopal
Madhya Pradesh, 462066, India
Email address: arushnmath@iiserb.ac.in
Shailesh Kumar Tiwari
Department of Mathematics
Indian Institute of Science Education and Research, Bhopal
Madhya Pradesh, 462066, India
AND
Department of Mathematics
Indian Institute of Technology Patna
Bihar, 801106, India
Email address: shaileshiitd84@gmail.com

