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A NOTE ON GENERALIZED DERIVATIONS AS A JORDAN

HOMOMORPHISMS

Arusha Chandrasekhar and Shailesh Kumar Tiwari

Abstract. Let R be a prime ring of characteristic different from 2. Sup-

pose that F , G, H and T are generalized derivations of R. Let U be
the Utumi quotient ring of R and C be the center of U , called the ex-

tended centroid of R and let f(x1, . . . , xn) be a non central multilinear

polynomial over C. If

F (f(r1, . . . , rn))G(f(r1, . . . , rn))− f(r1, . . . , rn)T (f(r1, . . . , rn))

= H(f(r1, . . . , rn)2)

for all r1, . . . , rn ∈ R, then we describe all possible forms of F , G, H and

T .

1. Introduction

Throughout the article, R always denotes an associative prime ring with
center Z(R). The Utumi quotient ring of R is denoted by U . The center of
U is called the extended centroid of R and it is denoted by C. Note that
the extended centroid C, of a prime ring R, is always a field. The definition
and axiomatic formulation of Utumi quotient ring U can be found in [3] and
[8]. The Lie product of x, y ∈ R is denoted by [x, y] and [x, y] = xy − yx. A
ring R is said to be a prime ring if for any a, b ∈ R, aRb = 0 implies either
a = 0 or b = 0. Suppose S is a non empty subset of R and f is a mapping on
R. A mapping f is called centralizing function (commuting function) on S if
[f(s), s] ∈ Z(R)([f(s), s] = 0) for all s ∈ S.

The study of commuting and centralizing mappings goes long back. In 1955
Divinsky [13] studied the commuting automorphism on rings. More precisely,
Divinsky proved that a simple artinian ring is commutative if it has a commut-
ing automorphism different from the identity mapping. It is natural to ask what
happens if derivations behave like a centralizing functions on R? By derivation,
we mean an additive mapping d on R such that d(xy) = d(x)y + xd(y) for all
x, y ∈ R. Define a mapping da on R by da(x) = [a, x] for all x ∈ R, where
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a ∈ R is fixed. Notice that da is a derivation on R, called an inner derivation
induced by an element a ∈ R. The derivation is called an outer derivation if
it is not an inner derivation. The answer to the above question on centralizing
derivations on a prime ring R was given by Posner in [26]. More precisely,
Posner proved that a prime ring must be commutative if it has a non zero cen-
tralizing derivation on R. In 1993, Brešar [6] extended the Posner’s [26] result
by taking two derivations. Brešar proved that if d and δ are two derivations of
R such that d(x)x− xδ(x) ∈ Z(R) for all x ∈ R, then either d = δ = 0 or R is
commutative. Later on, many mathematicians extended these results on some
appropriate subsets of a prime rings.

Another question that arises is what happens if x is replaced with multilinear
polynomials in Posner’s and Brešar’s results in [26] and [6], respectively. The
definition of a multilinear polynomial is given below.

Let X = {x1, x2, . . .} be a countable set with non commuting variables
x1, x2, . . .. Let Z〈X〉 be the free algebra on X over Z. Let f = f(x1, . . . , xn) ∈
Z〈X〉 be a polynomial such that at least one of its monomials of highest degree
has coefficient 1. Let R be a nonempty subset of a ring A. We say that f is a
polynomial identity on R if f(r1, . . . , rn) = 0 for all r1, . . . , rn ∈ R.

Definition. A polynomial f = f(x1, . . . , xn) ∈ Z〈X〉 is said to be a multilinear
if every xi, 1 ≤ i ≤ n, appears exactly once in each of the monomials of f .

The answer to the above question was given by Lee and Shiue [22]. They
proved that if R is a prime ring, f(x1, . . . , xn) a multilinear polynomial over C
which is not central valued on R and d, g are derivations of R such that

d(f(x1, . . . , xn))f(x1 . . . , xn)− f(x1, . . . , xn)g(f(x1 . . . , xn)) ∈ C
for all x1, . . . , xn ∈ R, then either d = 0 = g or d = −g and f(x1, . . . , xn)2 is
central valued on R, except when char(R) = 2 and dimC (RC) = 4.

An additive mapping f on ring R is said to be a homomorphism (or an anti-
homomorphism) if f(ab) = f(a)f(b) (or f(ab) = f(b)f(a)) for all a, b ∈ R. Bell
and Kappe [4], proved that if d is a derivation of a prime ring R such that d
acts as a homomorphism or as an anti-homomorphism on a non zero right ideal
of R, then d = 0. The one extension of derivation is a generalized derivation.
The notion of generalized derivation is given first by Brešar [5]. The definition
of generalized derivation is given below.

Definition. Let R be a ring. A mapping F on R is called a generalized
derivation on R if there exists a derivation d on R such that

F (x+ y) = F (x) + F (y) and F (xy) = F (x)y + xd(y)

for all x, y ∈ R. If R is a prime or a semiprime ring, then the derivation d is
uniquely determined by F and is called the associated derivation of F .

Here, we notice that every derivation is a generalized derivation but the
converse need not be true in general. An example of a generalized derivation
which is not a derivation is given below.
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Example 1.1. Let Z be the set of integers. Suppose R = {( x y
0 z ) |x, y, z ∈ Z}.

Define d : R → R as d ( x y
0 z )=

(
0 y
0 0

)
. Then d is a derivation on R. Define a

mapping F on R such that F ( x y
0 z )=

(
0 y
0 z

)
. Then F is a generalized derivation

associated with a non zero derivation d on R. Here, we see that F is not a
derivation on R.

Another example of a generalized derivation is a mapping of the form F (x) =
ax + xb for all x ∈ R, where a, b ∈ R is fixed. Such generalized derivations
are called a generalized inner derivation. Generalized inner derivations and left
multipliers are primarily studied on operator algebras. Therefore, any study
from algebraic point of view might be interesting (see for example [2,10,17,21,
23,28]).

In 2016, Tiwari et al. [29] studied the results of Bell and Kappe [4] by
replacing derivation with generalized derivation on ideals of prime rings. Fur-
ther, Tiwari et al. [30] extended [29] and [4] results to the case of multiplicative
(generalized)-derivation on ideals of semiprime rings.

Definition. An additive mapping f a ring R is said to be a Jordan homomor-
phism if f(a2) = (f(a))2 for all a ∈ R.

It is easily seen that every homomorphism is a Jordan homomorphism but
the converse need not true in general. An example of a Jordan homomorphism,
which is not a homomorphism is given below.

Example 1.2. Let R be a ring with involution ∗. Let S = R
⊕
R and a ∈

Z(R) such that r1ar2 = 0 for all r1, r2 ∈ R. Define a function f on S by
f(r, t) = (ar, t∗) for all r, t ∈ R. Then f is a Jordan homomorphism but not a
homomorphism.

If R satisfies f(a2) = (f(a))2 for all a ∈ R, then by linearizing this we get
f(ab + ba) = f(a)f(b) + f(b)f(a) for all a, b ∈ R. It implies that f(a ◦ b) =
f(a) ◦ f(b) for all a, b ∈ R. If R is a 2-torsion free ring, then both properties
are equivalent.

In 1956, Herstein [16] proved that if f : R→ R′ is a Jordan homomorphism,
where R′ is a prime ring and R is a ring with characteristic of R′ is different
from 2 and 3, then either f is a homomorphism or an anti-homomorphism.
Further, Smiley [27] extended the above result and removed the restriction on
characteristic not equal to 3 in the hypothesis of the Herstein’s [16] theorem
and proved that every Jordan homomorphism from ring R onto prime ring R′ of
characteristic different from 2 is either homomorphism or anti-homomorphism.

On the other hand Filippis et al. in [7], proved the following. Let R be a non
commutative prime ring of characteristic different from 2 with Utumi quotient
ring U and extended centroid C, f(x1, . . . , xn) a multilinear polynomial over
C which is not an identity for R, F and G non zero generalized derivations of
R. If F (u)G(u) = 0 for all u ∈ f(R) = {f(r1, . . . , rn) | ri ∈ R}, then one of
the following holds:
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(i) There exist a, c ∈ U such that ac = 0 and F (x) = xa, G(x) = cx for
all x ∈ R;

(ii) f(x1, . . . , xn)2 is central valued on R and there exist a, c ∈ U such that
ac = 0 and F (x) = ax, G(x) = xc for all x ∈ R;

(iii) f(x1, . . . , xn) is central valued on R and there exist a, b, c, q ∈ U such
that (a + b)(c + q) = 0 and F (x) = ax + xb, G(x) = cx + xq for all
x ∈ R.

More recently, in 2018, Dhara [9] studied the following identities.
Let R be a non commutative prime ring of characteristic different from 2 with

Utumi quotient ring U and extended centroid C, f(x1, . . . , xn) a multilinear
polynomial over C which is not central valued on R, F , G and H are generalized
derivations of R. If F (u)G(u) = H(u2) for all u = f(r1, . . . , rn) ∈ f(R), then
one of the following holds:

(i) there exist a ∈ C and b ∈ U such that F (x) = ax, G(x) = xb and
H(x) = xab for all x ∈ R;

(ii) there exist a, b ∈ U such that F (x) = xa, G(x) = bx and H(x) = abx
for all x ∈ R with ab ∈ C;

(iii) there exist a ∈ U and b ∈ C such that F (x) = ax, G(x) = bx and
H(x) = abx for all x ∈ R;

(iv) f(x1, . . . , xn)2 is central valued on R and one of the following holds:
(a) there exist a, b, c, q ∈ U such that F (x) = ax, G(x) = xb and

H(x) = cx+ xq for all x ∈ R with ab = c+ q;
(b) there exist a, b, c, q ∈ U such that F (x) = xa, G(x) = bx and

H(x) = cx+ xq for all x ∈ R with c+ q = ab ∈ C.

2. Main results

One might wonder if it is possible that a generalized derivation acts as a
Jordan homomorphism on some subset of a prime ring. Following this line of
investigation, our main theorem gives a complete description of the forms of
generalized derivations F , G, H and T of a prime ring R, in the case when
generalized derivation F acts as a Jordan homomorphism. Further, our aim is
to extend the results of De Filippis et al. [7], Dhara [9], Argac and De Filippis
[1], Tiwari [28]. The statement of our main result is the following.

Theorem 2.1. Let R be a prime ring of characteristic different from 2 and F ,
G, H and T generalized derivations on R. Let U be the Utumi ring of quotients
of R with extended centroid C and f(x1, . . . , xn) be a non central multilinear
polynomial over C. If

F (f(r))G(f(r))− f(r)H(f(r)) = T (f(r)2)

for all r = (r1, . . . , rn) ∈ Rn, then one of the following holds:

(i) there exist a ∈ C, b, b′, c ∈ U such that F (x) = ax, G(x) = bx + xb′,
H(x) = abx− x(c− ab′) and T (x) = xc for all x ∈ R;
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(ii) there exist a, b, c ∈ U such that F (x) = xa, G(x) = bx, H(x) = abx−xc
and T (x) = xc for all x ∈ R;

(iii) there exist a, c ∈ U , b ∈ C such that F (x) = ax, G(x) = bx, H(x) = xc
and T (x) = abx− xc for all x ∈ R;

(iv) there exist b, c ∈ U , a ∈ C such that F (x) = ax, G(x) = xb, H(x) = xc
and T (x) = x(ab− c) for all x ∈ R;

(v) there exist a, b, p ∈ U , c, λ ∈ C such that F (x) = ax + xb, G(x) = cx,
H(x) = bcx− λx− xp and T (x) = λx+ acx+ xp for all x ∈ R;

(vi) f(r1, . . . , rn)2 is central valued on R and one of the following holds;
(a) there exist a ∈ C, b, b′, p, p′ ∈ U such that F (x) = ax, G(x) =

bx+ xb′, H(x) = abx+ xab′ − x(p+ p′) and T (x) = px+ xp′ for
all x ∈ R;

(b) there exist a, b, p, p′ ∈ U such that F (x) = xa, G(x) = bx, H(x) =
abx− x(p+ p′) and T (x) = px+ xp′ for all x ∈ R;

(c) there exist a, b, c, p ∈ U such that F (x) = ax, G(x) = xb, H(x) =
xc and T (x) = [p, x]− xc+ xab for all x ∈ R;

(d) there exist a, b, p, q ∈ U , c ∈ C such that F (x) = ax+ xb, G(x) =
cx, H(x) = c(bx+xa)−x(p+q) and T (x) = px+xq for all x ∈ R.

The following corollaries are immediate consequences of our Theorem 2.1.

Corollary 2.2 ([9, Main Theorem]). If we take H = 0 in our Theorem 2.1,
then we get the theorem of Dhara [9].

Corollary 2.3 ([7, Main Theorem]). If we take H = 0 = T in our Theorem
2.1, then we get the Carini, Filippis and Gsudo [7, Main Theorem] result.

In particular, when F = G and H = 0 in our Theorem 2.1, we obtain a
particular result of De Filippis and Scudo [11, Theorem 1].

Corollary 2.4. Let R be a prime ring of characteristic different from 2 and F ,
T generalized derivations on R. Let U be the Utumi ring of quotients of R with
extended centroid C and f(x1, . . . , xn) be a non central multilinear polynomial
over C. If

(F (f(r)))2 = T (f(r)2)

for all r = (r1, . . . , rn) ∈ Rn, then one of the following holds:

(i) there exists a ∈ C such that F (x) = ax, T (x) = a2x for all x ∈ R;
(ii) there exist a ∈ C, b, c ∈ U such that F (x) = ax and T (x) = bx+xc for

all x ∈ R with a2 = b+ c and f(x1, . . . , xn)2 is central valued on R.

If we take F = T in Corollary 2.4, we get the following.

Corollary 2.5. Let R be a prime ring with characteristic different from 2 and
F a generalized derivation on R. Let U be the Utumi ring of quotients with
extended centroid C = Z(U) and let f(x1, . . . , xn) be a multilinear polynomial
over C, which is not central valued on R. If F (u2) = (F (u))2 (i.e., if F acts
as a Jordan homomorphism) for all u ∈ f(R), then F (x) = x for all x ∈ R.
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The following corollary is an immediate application of Corollary 2.5.

Corollary 2.6. Let R be a prime ring with characteristic different from 2 and
F be a generalized derivation on R. Let U be the Utumi ring of quotients with
extended centroid C = Z(U) and let f(x1, . . . , xn) be a multilinear polynomial
over C, which is not central valued on R. If F (uv) = F (u)F (v) (i.e., F
behaves as a homomorphism) or F (uv) = F (v)F (u) (i.e., F behaves as an
anti-homomorphism) for all u, v ∈ f(R), then F (x) = x for all x ∈ R.

Proof. By our hypothesis, we have F (uv) = F (u)F (v) for all u, v ∈ f(R).
This implies that F (u2) = (F (u))2 for all u ∈ f(R). From Corollary 2.5,
we get our conclusion. Similarly, we can show the case when F ia an anti-
homomorphism. �

In particular if we take f(r) = x in Corollary 2.5, we get the following.

Corollary 2.7. Let R be a non commutative prime ring with characteristic
different from 2 and F be a generalized derivation on R. Let U be the Utumi
ring of quotients with extended centroid C = Z(U). If F (u2) = (F (u))2 for all
u ∈ f(R), then F (x) = x for all x ∈ R.

If we take T = 0 and G = I, the identity mapping on R, then we get the
result of Argac and De Filippis [1]. More precisely, we have:

Corollary 2.8 ([1, Main Theorem]). Let R be a prime ring with characteristic
different from 2 and U be its Utumi ring of quotients with extended centroid
C. Suppose that F and G are two non zero generalized derivations of R such
that F (u)u− uG(u) = 0 for all u = f(x1, . . . , xn) ∈ f(I), where f(x1, . . . , xn)
is a non central multilinear polynomial over K and I is a non zero ideal of R.
Then one of the following holds:

(1) there exists a ∈ U such that H(x) = xa and G(x) = ax for all x ∈ R;
(2) f(x1, . . . , xn)2 is central valued on R and there exist a, b ∈ U such that

H(x) = ax+ xb and G(x) = bx+ xa for all x ∈ R.

In particular for G = I, the identity mapping, we have the following corol-
lary.

Corollary 2.9. Let R be a prime ring with characteristic different from 2 and
U be its Utumi ring of quotients with extended centroid C = Z(U). Suppose
that F , H and T are generalized derivations on R and f(x1, . . . , xn) is a non
central multilinear polynomial over C such that F (u)u−uH(u) = T (u2) for all
u ∈ f(R), then one of the following holds.

(i) there exist a, b, c ∈ U , λ ∈ C such that F (x) = ax + xb, H(x) =
(b− λ)x− xc and T (x) = (a+ λ)x+ xc for all x ∈ R;

(ii) there exist a, b, c, p ∈ U such that F (x) = ax + xb, H(x) = bx + xa −
x(c+p) and T (x) = cx+xp for all x ∈ R and f(x1, . . . , xn)2 is central
valued on R.
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In particular for F = H = T in Corollary 2.9, we obtain the following.

Corollary 2.10. Let R be a prime ring with characteristic different from 2 and
U be its Utumi ring of quotients with extended centroid C = Z(U). Suppose that
F is a generalized derivation on R and f(x1, . . . , xn) is a non central multilinear
polynomial over C such that F (u)u − uF (u) = F (u2) for all u ∈ f(R), then
F = 0.

An immediate corollary is obtained by taking G = I, the identity mapping
and T = 0 in our Theorem 2.1, which gives a particular case of Lee and Shiue
[22], Brešar’s [6]. Moreover by replacing T = 0, G = I, the identity mapping
and F = H = d, a derivation, then corollary gives a famous result of Posner
[26].

Corollary 2.11. Let R be a prime ring of characteristic different from 2 and
I be a non zero ideal of R. Suppose that d is a non zero derivation on R such
that [d(x), x] = 0 for all x ∈ I, then R is commutative.

3. F , G, H and T are an inner generalized derivations

In this section we study the situation when F , G, H and T are generalized
inner derivations of R. For some a, a′, b, b′, c, c′, p, p′ ∈ U , let F (x) = ax+ xa′,
G(x) = bx+ xb′, H(x) = cx+ xc′ and T (x) = px+ xp′ for all x ∈ R. Then we
prove the following proposition:

Proposition 3.1. Let R be a prime ring of characteristic different from 2 and
F , G, H and T generalized inner derivations on R. Let U be the Utumi ring
of quotients of R with extended centroid C and f(x1, . . . , xn) be a non central
multilinear polynomial over C. If

F (f(r))G(f(r))− f(r)H(f(r)) = T (f(r)2)

for all r = (r1, . . . , rn) ∈ Rn, then one of the following holds:

(i) there exist a ∈ C, b, b′, c ∈ U such that F (x) = ax, G(x) = bx + xb′,
H(x) = abx− x(c− ab′) and T (x) = xc for all x ∈ R;

(ii) there exist a, b, c ∈ U such that F (x) = xa, G(x) = bx, H(x) = abx−xc
and T (x) = xc for all x ∈ R;

(iii) there exist a, c ∈ U , b ∈ C such that F (x) = ax, G(x) = bx, H(x) = xc
and T (x) = abx− xc for all x ∈ R;

(iv) there exist b, c ∈ U , a ∈ C such that F (x) = ax, G(x) = xb, H(x) = xc
and T (x) = x(ab− c) for all x ∈ R;

(v) there exist a, b, p ∈ U , c, λ ∈ C such that F (x) = ax + xb, G(x) = cx,
H(x) = bcx− λx− xp and T (x) = λx+ acx+ xp for all x ∈ R;

(vi) f(r1, . . . , rn)2 is central valued on R and one of the following holds;
(a) there exist a ∈ C, b, b′, p, p′ ∈ U such that F (x) = ax, G(x) =

bx+ xb′, H(x) = abx+ xab′ − x(p+ p′) and T (x) = px+ xp′ for
all x ∈ R;
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(b) there exist a, b, p, p′ ∈ U such that F (x) = xa, G(x) = bx, H(x) =
abx− x(p+ p′) and T (x) = px+ xp′ for all x ∈ R;

(c) there exist a, b, c, p ∈ U such that F (x) = ax, G(x) = xb, H(x) =
xc and T (x) = [p, x]− xc+ xab for all x ∈ R;

(d) there exist a, b, p, q ∈ U , c ∈ C such that F (x) = ax+ xb, G(x) =
cx, H(x) = c(bx+xa)−x(p+q) and T (x) = px+xq for all x ∈ R.

To prove Proposition 3.1, we need the following results.

Lemma 3.2 ([12, Lemma 1]). Let C be an infinite field and m ≥ 2. If
A1, . . . , Ak are not scalar matrices in Mm(C), then there exists some invertible
matrix P ∈ Mm(C) such that each matrix PA1P

−1, . . . , PAkP
−1 has all non

zero entries.

Proposition 3.3. Let R = Mm(C), m ≥ 2, be the ring of all m×m matrices
over the infinite field C. Suppose that f(x1, . . . , xn) is a non central multilinear
polynomial over C and a, b, a′, b′, c, p, w ∈ R such that af(r)2b′ + af(r)bf(r) +
f(r)wf(r) + f(r)a′f(r)b′− f(r)2c− pf(r)2 = 0 for all r = (r1, . . . , rn) ∈ f(R).
Then one of the following holds:

(1) a, a′ ∈ Z(R); (2) a, b′ ∈ Z(R); (3) b, a′ ∈ Z(R); (4) b, b′ ∈ Z(R).

Proof. By our hypothesis, R satisfies the generalized polynomial identity

(1)

af(r1, . . . , rn)2b′ + af(r1, . . . , rn)bf(r1, . . . , rn)

+ f(r1, . . . , rn)wf(r1, . . . , rn) + f(r1, . . . , rn)a′f(r1, . . . , rn)b′

− f(r1, . . . , rn)2c− pf(r1, . . . , rn)2

for all r1, . . . , rn ∈ R. We shall prove this by contradiction. Suppose that
a /∈ Z(R) and b /∈ Z(R).

Since a /∈ Z(R) and b /∈ Z(R) by Lemma 3.2 there exists a C-automorphism
φ of Mm(C) such that φ(a) and φ(b) have all non zero entries. Clearly φ(a),
φ(b), φ(a′), φ(b′), φ(w), φ(c) and φ(p) must satisfy the condition (1).

Here eij denotes the matrix whose (i, j)-entry is 1 and rest of the entries
are zero. Since f(x1, . . . , xn) is not central, by [20] (see also [24]), there exist
s1, . . . , sn ∈Mm(C) and 0 6= γ ∈ C such that f(s1, . . . , sn) = γeij , with i 6= j.
Moreover, since the set {f(r1, . . . , rn) : r1, . . . , rn ∈Mm(C)} is invariant under
the action of all C-automorphisms of Mm(C), then for any i 6= j there exist
r1, . . . , rn ∈Mm(C) such that f(r1, . . . , rn) = eij . Hence by (1) we have

φ(a)e2ijφ(b′)+φ(a)eijφ(b)eij+eijφ(w)eij+eijφ(a′)eijφ(b′)−e2ijφ(c)−φ(p)e2ij =0.

That is

(2) φ(a)eijφ(b)eij + eijφ(w)eij + eijφ(a′)eijφ(b′) = 0.

Left multiplying by eij , we obtain eijφ(a)eijφ(b)eij = 0. Thus we have

φ(a)jiφ(b)jieij = 0.
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This gives a contradiction, since φ(a) and φ(b) have all non zero entries. Thus
we conclude that either φ(a) or φ(b) is central. This gives either a ∈ C or
b ∈ C.

Next, we assume that a′ /∈ Z(R) and b′ /∈ Z(R). Using similar arguments as
above we have used, we get the equation (2). Now, right multiplying by eij in
the equation (2), we get

eijφ(a′)eijφ(b′)eij = 0

a contradiction, since φ(a′) and φ(b′) have all non zero entries. Combining
these two we get the required results. �

Proposition 3.4. Let R = Mm(C), m ≥ 2, be the ring of all matrices over
the field C, with characteristic different from 2. Suppose that f(x1, . . . , xn) is
a non central multilinear polynomial over C and a, b, a′, b′, c, p, w ∈ R such that
af(r)2b′ + af(r)bf(r) + f(r)wf(r) + f(r)a′f(r)b′ − f(r)2c− pf(r)2 = 0 for all
r = (r1, . . . , rn) ∈ f(R). Then one of the following holds:

(1) a, a′ ∈ Z(R); (2) a, b′ ∈ Z(R); (3) b, a′ ∈ Z(R); (4) b, b′ ∈ Z(R).

Proof. If C is an infinite field, then conclusions follow from Proposition 3.3.
Now assume C is a finite field and let K be an infinite extension field of

C. Let R = Mm(K) ∼= R ⊗C K. Notice that the multilinear polynomial
f(x1, . . . , xn) is central valued on R if and only if it is central valued on R.
Suppose that the generalized polynomial Q(r1, . . . , rn) such that

Q(r1, . . . , rn) = af(r1, . . . , rn)2b′ + af(r1, . . . , rn)bf(r1, . . . , rn)

+ f(r1, . . . , rn)wf(r1, . . . , rn) + f(r1, . . . , rn)a′f(r1, . . . , rn)b′

− f(r1, . . . , rn)2c− pf(r1, . . . , rn)2

is a generalized polynomial identity for R.
Moreover, it is a multihomogeneous of multidegree (2, . . . , 2) in the indeter-

minates r1, . . . , rn. Hence the complete linearization of Q(r1, . . . , rn) is a mul-
tilinear generalized polynomial Θ(r1, . . . , rn, x1, . . . , xn) in 2n indeterminates,
moreover

Θ(r1, . . . , rn, r1, . . . , rn) = 2nQ(r1, . . . , rn).

It is clear that the multilinear polynomial Θ(r1, . . . , rn, x1, . . . , xn) is a gener-
alized polynomial identity for both R and R. Since characteristic of R is not
two, we obtain Q(r1, . . . , rn) = 0 for all r1, . . . , rn ∈ R and then conclusion
follows from Proposition 3.3. �

In view of above, we can write the following corollary.

Corollary 3.5. Let R = Mm(C) be the ring of all m ×m matrices over the
field C, where m ≥ 2, with characteristic different from 2. If a1, a2, a3, a4, a5
a6, a7 ∈ R such that a1r

2a2 + a1ra3r+ ra4r+ ra5ra2− r2a6− a7r2 = 0 for all
r ∈ R, then either a1 ∈ C or a3 ∈ C and either a5 ∈ C or a2 ∈ C.



718 A. CHANDRASEKHAR AND S. K. TIWARI

Proposition 3.6. Let R be a primitive ring of characteristic different from 2
with a non zero socle which is isomorphic to a dense ring of linear transforma-
tions of an infinite dimensional vector space V over C. If a1, a2, a3, a4, a5
a6, a7 ∈ R such that a1r

2a2 + a1ra3r+ ra4r+ ra5ra2− r2a6− a7r2 = 0 for all
r ∈ R, then either a1 ∈ C or a3 ∈ C and either a5 ∈ C or a2 ∈ C.

Proof. We shall prove this proposition by contradiction. Suppose that neither
a1 nor a3 and neither a2 nor a5 are in C. Since dimC(V ) is infinite. By
Martindale’s theorem [25, Theorem 3], for any e2 = e ∈ soc(R) we have eRe ∼=
Mt(C) with t = dimC V e. Since, none of a1, a3 in C and none of a2 and a5 in C,
there exist h1, h2, h3, h4 ∈ soc(R) such that [a1, h1] 6= 0, [a3, h2] 6= 0, [a5, h3] 6=
0 and [a2, h4] 6= 0. By Litoff’s Theorem [15], there exists idempotent e ∈
soc(R) such that a1h1, h1a1, a3h2, h2a3, a5h3, h3a5, a2h4, h4a2, h1, h2, h3, h4 ∈
eRe. Since R satisfies generalized identity

(3)

e
{
a1f(ex1e, . . . , exne)

2a2 + a1f(ex1e, . . . , exne)a3f(ex1e, . . . , exne)

+ f(ex1e, . . . , exne)a4f(ex1e, . . . , exne)

+ f(ex1e, . . . , exne)a5f(ex1e, . . . , exne)a2

− f(ex1e, . . . , exne)
2a6 − a7f(ex1e, . . . , exne)

2
}
e

the subring eRe satisfies

(4)

ea1ef(x1, . . . , xn)2ea2e+ ea1ef(x1, . . . , xn)ea3ef(x1, . . . , xn)

+ f(x1, . . . , xn)ea4ef(x1, . . . , xn) + f(x1, . . . , xn)ea5ef(x1, . . . , xn)ea2e

− f(x1, . . . , xn)2ea6e− ea7ef(x1, . . . , xn)2.

Then by the above finite dimensional case, either ea1e or ea3e and either ea2e
or ea5e are central elements of eRe. Thus either a1h1 = (ea1e)h1 = h1ea1e =
h1a1 or a3h2 = (ea3e)h2 = h2(ea3e) = h2a3 and either a5h3 = (ea5e)h3 =
h3(ea5e) = h3a5 or a2h4 = (ea2e)h4 = h4(ea2e) = h4a2, a contradiction. �

Lemma 3.7. Let R be a prime ring of characteristic different from 2 with
Utumi quotient ring U and extended centroid C and f(x1, . . . , xn) a multi-
linear polynomial over C, which is not central valued on R. Suppose that
for some a, b, a′, b′, c, w, p ∈ R such that af(r)2b′ + af(r)bf(r) + f(r)wf(r) +
f(r)a′f(r)b′ − f(r)2c − pf(r)2 = 0 for all r = (r1, . . . , rn) ∈ f(R). Then one
of the following holds:

(1) a, a′ ∈ Z(R); (2) a, b′ ∈ Z(R); (3) b, a′ ∈ Z(R); (4) b, b′ ∈ Z(R).

Proof. First, we shall prove that either a ∈ C or b ∈ C. We shall prove this by
contradiction. Suppose that a /∈ C and b /∈ C. By hypothesis, we have

h(x1, . . . , xn) = af(r1, . . . , rn)2b′ + af(r1, . . . , rn)bf(r1, . . . , rn)

+ f(r1, . . . , rn)wf(r1, . . . , rn) + f(r1, . . . , rn)a′f(r1, . . . , rn)b′(5)

− f(r1, . . . , rn)2c− pf(r1, . . . , rn)2
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for all r1, . . . , rn ∈ R. Since R and U satisfy same generalized polynomial iden-
tity (GPI) (see [8]), U satisfies h(r1, . . . , rn) = 0T . Suppose that h(r1, . . . , rn)
is a trivial GPI for U . Let T = U ∗C C{r1, . . . , rn}, the free product of
U and C{r1, . . . , rn}, the free C-algebra in non commuting indeterminates
r1, . . . , rn. Then, h(r1, . . . , rn) is zero element in T = U ∗C C{r1, . . . , rn}.
Since a /∈ C and b /∈ C, the term af(r1, . . . , rn)bf(r1, . . . , rn) appears nontriv-
ially in h(r1, . . . , rn). This gives a contradiction that is we have either a ∈ C
or b ∈ C.

Let a ∈ C. Then we shall show that either a′ ∈ C or b′ ∈ C. Suppose that
a′ /∈ C and b′ /∈ C. Since a ∈ C, U satisfies

P (x1, . . . , xn) = f(x1, . . . , xn)(ab+ w)f(x1, . . . , xn) + f(x1, . . . , xn)2(ab′ − c)
+ f(x1, . . . , xn)a′f(x1, . . . , xn)b′ − pf(x1, . . . , xn)2

for all x1, . . . , xn ∈ R. This is again a trivial GPI. Since P (x1, . . . , xn) = 0T ,
the term f(x1, . . . , xn)a′f(x1, . . . , xn)b′ appears non trivially in P (x1, . . . , xn).
This implies that either a′ ∈ C or b′ ∈ C, a contradiction. Thus we have either
a ∈ C, a′ ∈ C or a ∈ C, b′ ∈ C, which is our conclusion either (1) or (2).

Similarly, we can show that when b ∈ C either a′ ∈ C or b′ ∈ C, which is
our conclusion either (3) and (4).

Next, suppose that h(x1, . . . , xn) is a non trivial GPI for U . If C is infinite,
then we have h(x1, . . . , xn) = 0 for all x1, . . . , xn ∈ U ⊗C C, where C is the
algebraic closure of C. Since both U and U⊗CC are prime and centrally closed
[14, Theorems 2.5 and 3.5], we may replace R by U or U ⊗C C according to
C finite or infinite. Then R is centrally closed over C and h(x1, . . . , xn) = 0
for all x1, . . . , xn ∈ R. By Martindale’s theorem [25], R is then a primitive
ring with non zero socle soc(R) and C as its associated division ring. Then,
by Jacobson’s theorem [18, p. 75], R is isomorphic to a dense ring of linear
transformations of a vector space V over C.

Assume first that V is finite dimensional over C, say dimCV = m. By
density of R, we have R ∼= Mm(C). Since f(r1, . . . , rn) is not central valued
on R, R must be non commutative and so m ≥ 2. By Proposition 3.3, we get
that either a, a′ ∈ C or a, b′ ∈ C or b, a′ ∈ C or b, b′ ∈ C.

If V is infinite dimensional over C, we use Proposition 3.6 to get the con-
clusions. �

Lemma 3.8. Let R be a prime ring of characteristic different from 2 with
Utumi quotient ring U and extended centroid C and f(x1, . . . , xn) a multilinear
polynomial over C, which is not central valued on R. Suppose that for some
a, b, c, p, q ∈ U such that af(r)2b − f(r)cf(r) − f(r)2q − pf(r)2 = 0 for all
r = (r1, . . . , rn) ∈ f(R). Then c ∈ C.

Proof. By using similar argument as we have used above, we can get our con-
clusion. �
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Lemma 3.9 ([9, Lemma 2.9]). Let R be a non commutative prime ring of
char(R) 6= 2, a, b, c, c′ ∈ U , let p(x1, . . . , xn) be any polynomial over C which is
not an identity for R. If ap(r)+p(r)b+cp(r)c′ = 0 for all r = (r1, . . . , rn) ∈ Rn,
then one of the following holds:

(1) b, c′ ∈ C and a+ b+ cc′ = 0;
(2) a, c ∈ C and a+ b+ cc′ = 0;
(3) a+ b+ cc′ = 0 and p(x1, . . . , xn) is a central valued on R.

The following Lemma is a particular case of Lemma 3 of [1].

Lemma 3.10. Let R be a non commutative prime ring of characteristic dif-
ferent from 2 with Utumi quotient ring U and extended centroid C and let
f(x1, . . . , xn) be a multilinear polynomial over C which is not central valued on
R. Suppose that there exist a, b, c ∈ U such that f(r)af(r)+f(r)2b−cf(r)2 = 0
for all r ∈ Rn. Then one of the following conditions holds:

(1) b, c ∈ C, c− b = a = α ∈ C,
(2) f(x1, . . . , xn)2 is central valued and there exists α ∈ C such that c−b =

a = α.

Proof of Proposition 3.1. By our hypothesis, we have(
af(r) + f(r)a′

)(
bf(r) + f(r)b′

)
− f(r)

(
cf(r) + f(r)c′

)
= pf(r)2 + f(r)2p′

for all r = (r1, . . . , rn) ∈ Rn. From Lemma 3.7, we get either a, a′ ∈ C or
a, b′ ∈ C or b, a′ ∈ C or b, b′ ∈ C. Now we will consider the following cases.

Case (I). Let a, a′ ∈ C, then F (x) = (a + a′)x for all x ∈ R. Then by the
hypothesis, we have

f(r)((a+ a′)b− c)f(r) + f(r)2((a+ a′)b′ − c′ − p′)− pf(r)2 = 0

for all r = (r1, . . . , rn) ∈ Rn. By Lemma 3.10, we have one of the following:

(1) p ∈ C, (a+a′)b′−c′−p′ ∈ C and p−(a+a′)b′+c′+p′ = (a+a′)b−c =
α ∈ C for some α ∈ C. This implies that T (x) = x(p + p′) and
c = (a+ a′)b− α, c′ = α − (p+ p′) + (a+ a′)b′. Thus, in this case we
have F (x) = (a+a′)x, G(x) = bx+xb′, H(x) = (a+a′)bx−x((p+p′)−
(a+ a′)b′) and T (x) = x(p+ p′) for all x ∈ R, which is our conclusion
(i);

(2) f(r1, . . . , rn)2 is central valued on R and p − (a + a′)b′ + c′ + p′ =
(a + a′)b − c = α ∈ C, which implies that c = (a + a′)b − α and c′ =
α−p+(a+a′)b′−p′. Thus we have F (x) = (a+a′)x, G(x) = bx+xb′,
H(x) = (a+ a′)bx− x(p+ p′) + x(a+ a′)b′, which is our conclusion (vi
(a)).

Case (II). Suppose that a ∈ C and b′ ∈ C. Then we have F (x) = x(a + a′)
and G(x) = (b+ b′)x. By the hypothesis we have

f(r)
(

(a+ a′)(b+ b′)− c
)
f(r) + f(r)2

(
− (c′ + p′)

)
− pf(r)2 = 0
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for all r = (r1, . . . , rn) ∈ Rn. By Lemma 3.10, we have one of the following:

(1) p ∈ C, c′+p′ ∈ C and p+c′+p′ = (a+a′)(b+b′)−c = α ∈ C for some
α ∈ C. This implies that T (x) = x(p+ p′) and c = (a+ a′)(b+ b′)−α,
c′ = α − p − p′. Thus, in this case we have F (x) = x(a + a′), G(x) =
(b+ b′)x, H(x) = (a+ a′)(b+ b′)x− x(p+ p′) and T (x) = x(p+ p′) for
all x ∈ R, which is our conclusion (ii);

(2) f(r1, . . . , rn)2 is central valued on R and p+c′+p′ = (a+a′)(b+b′)−c =
α ∈ C for some α ∈ C, which implies that c = (a + a′)(b + b′) − α,
c′ = α − p − p′. Thus we have F (x) = x(a + a′), G(x) = (b + b′)x,
H(x) = (a + a′)(b + b′)x − x(p + p′), T (x) = px + xp′ for all x ∈ R,
which is our conclusion (vi (b)).

Case (III). Suppose that b ∈ C, a′ ∈ C. That is F (x) = (a + a′)x, G(x) =
x(b+ b′) for all x ∈ R. Hence, our hypothesis reduces to

(a+ a′)f(r)2(b+ b′)− f(r)cf(r)− f(r)2(c′ + p′)− pf(r)2 = 0

for all r = (r1, . . . , rn) ∈ Rn. From Lemma 3.8, it gives that c ∈ C that is
H(x) = x(c+ c′). Then U satisfies

(a+ a′)f(r)2(b+ b′)− f(r)2(c+ c′ + p′)− pf(r)2 = 0

for all r = (r1, . . . , rn) ∈ Rn. By Lemma 3.9, we have one of the following:

(1) −c− c′ − p′ ∈ C, b+ b′ ∈ C and −p− c− c′ − p′ + (a+ a′)(b+ b′) = 0,
it implies that −c− c′ − p′ = λ ∈ C and p = (a+ a′)(b+ b′) + λ. Thus
in this case, we have F (x) = (a + a′)x, G(x) = x(b + b′) = (b + b′)x,
H(x) = x(c + c′) and T (x) = px + xp′ = (a + a′)(b + b′)x + λx +
x(−c− c′− λ) = (a+ a′)(b+ b′)x− x(c+ c′) for all x ∈ R, which is our
conclusion (iii);

(2) −p ∈ C, a + a′ ∈ C and −p − c − c′ − p′ + (a + a′)(b + b′) = 0, it
implies that F (x) = (a+ a′)x, G(x) = x(b+ b′), H(x) = x(c+ c′) and
T (x) = px+xp′ = x(p+p′) = x(−c− c′+(a+a′)(b+ b′)) for all x ∈ R,
which is our conclusion (iv);

(3) f(r1, . . . , rn)2 is central valued on R and−p−c−c′−p′+(a+a′)(b+b′) =
0. In this case, we have F (x) = (a + a′)x, G(x) = x(b + b′), H(x) =
x(c+ c′) and T (x) = px+xp′ = px+x(−p− c− c′+ (a+ a′)(b+ b′)) =
[p, x]+x((a+a′)(b+b′)− (c+c′)) for all x ∈ R, which is our conclusion
(vi (c)).

Case (IV). Suppose that b ∈ C, b′ ∈ C. Then we have F (x) = ax + xa′,
G(x) = (b+ b′)x, H(x) = cx+xc′ and T (x) = px+xp′ for all x ∈ R. Thus our
hypothesis reduces to

(b+ b′)
(
af(r)2 + f(r)a′f(r)

)
− f(r)

(
cf(r) + f(r)c′

)
= pf(r)2 + f(r)2p′

for all r = (r1, . . . , rn), r1, . . . , rn ∈ R. This can be re-written as(
(b+ b′)a− p

)
f(r)2 + f(r)

(
(b+ b′)a′ − c

)
f(r)− f(r)2

(
c′ + p′

)
= 0
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for all r = (r1, . . . , rn), r1, . . . , rn ∈ R. By Lemma 3.10, we have one of the
following:

(1) −c′−p′ ∈ C, p−(b+b′)a ∈ C and p−(b+b′)a+c′+p′ = (b+b′)a′−c = α
for some α ∈ C. This implies that c = (b+b′)a′−α and p = γ+(b+b′)a
and c′ = −β − p′, where −c′ − p′ = β and p − (b + b′)a = γ for some
β, γ ∈ C. We notice that p − (b + b′)a + c′ + p′ = α, this gives that
α+ β = p− (b+ b′)a = γ. Thus, in this case we have F (x) = ax+ xa′,
G(x) = (b + b′)x, H(x) = cx + xc′ = (b + b′)a′x − αx − xβ − xp′ =
(b+b′)a′x−(α+β)x−xp′ = (b+b′)a′x−γx−xp′ and T (x) = px+xp′ =
(b+ b′)ax+ γx+ xp′ for all x ∈ R, which is our conclusion (v);

(2) f(r1, . . . , rn)2 is central valued on R and p − (b + b′)a + c′ + p′ =
(b+ b′)a′− c = α for some α ∈ C, which implies that c = (b+ b′)a′−α,
c′ = α − p − p′ + (b + b′)a. In this case, we have F (x) = ax + xa′,
G(x) = (b+ b′)x, H(x) = cx+xc′ = (b+ b′)a′x−αx+αx−x(p+ p′) +
x(b+ b′)a = (b+ b′)a′x+x(b+ b′)a−x(p+ p′) and T (x) = px+xp′ for
all x ∈ R, which is our conclusion (vi (d)).

This proves Proposition 3.1. �

Lemma 3.11. Let R be a prime ring of characteristic different from 2 and F ,
G, H and T generalized derivations on R. Let U be the Utumi ring of quotients
of R with extended centroid C and f(x1, . . . , xn) be a non central multilinear
polynomial over C. If any three of F , G, T , H are generalized inner derivations
on R such that

F (f(r))G(f(r))− f(r)H(f(r)) = T (f(r)2)

for all r = (r1, . . . , rn) ∈ Rn, then one of the following holds:

(i) there exist a ∈ C, b, b′, c ∈ U such that F (x) = ax, G(x) = bx + xb′,
H(x) = abx− x(c− ab′) and T (x) = xc for all x ∈ R;

(ii) there exist a, b, c ∈ U such that F (x) = xa, G(x) = bx, H(x) = abx−xc
and T (x) = xc for all x ∈ R;

(iii) there exist a, c ∈ U , b ∈ C such that F (x) = ax, G(x) = bx, H(x) = xc
and T (x) = abx− xc for all x ∈ R;

(iv) there exist b, c ∈ U , a ∈ C such that F (x) = ax, G(x) = xb, H(x) = xc
and T (x) = x(ab− c) for all x ∈ R;

(v) there exist a, b, p ∈ U , c, λ ∈ C such that F (x) = ax + xb, G(x) = cx,
H(x) = bcx− λx− xp and T (x) = λx+ acx+ xp for all x ∈ R;

(vi) f(r1, . . . , rn)2 is central valued on R and one of the following holds;
(a) there exist a ∈ C, b, b′, p, p′ ∈ U such that F (x) = ax, G(x) =

bx+ xb′, H(x) = abx+ xab′ − x(p+ p′) and T (x) = px+ xp′ for
all x ∈ R;

(b) there exist a, b, p, p′ ∈ U such that F (x) = xa, G(x) = bx, H(x) =
abx− x(p+ p′) and T (x) = px+ xp′ for all x ∈ R;

(c) there exist a, b, c, p ∈ U such that F (x) = ax, G(x) = xb, H(x) =
xc and T (x) = [p, x]− xc+ xab for all x ∈ R;
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(d) there exist a, b, p, q ∈ U , c ∈ C such that F (x) = ax+ xb, G(x) =
cx, H(x) = c(bx+xa)−x(p+q) and T (x) = px+xq for all x ∈ R.

Proof. To prove this Lemma, we shall study the following cases.

Case 1. Let F,G,H be generalized inner derivations and T a generalized
derivation on R. If T is a generalized inner derivation on R, then by Proposition
3.1, we get our conclusions. Suppose that T is not a generalized inner derivation
on R. For some a, b, u, c, p, p′, q ∈ U such that F (x) = ax+xb, G(x) = ux+xc,
H(x) = px + xp′ and T (x) = qx + d(x), where d is a derivation on U . If d is
an inner derivation, then T is a generalized inner derivation, a contradiction.
Thus d can not be an inner derivation on R. Then U satisfies

(6)

af(r1, . . . , rn)uf(r1, . . . , rn) + af(r1, . . . , rn)2c

+ f(r1, . . . , rn)buf(r1, . . . , rn) + f(r1, . . . , rn)bf(r1, . . . , rn)c

− f(r1, . . . , rn)pf(r1, . . . , rn)− f(r1, . . . , rn)2p′

= qf(r1, . . . , rn)2 + d(f(r1, . . . , rn))f(r1, . . . , rn)

+ f(r1, . . . , rn)d(f(r1, . . . , rn)).

By using Kharchenko’s theorem [19], we can replace

d(f(r1, . . . , rn)) = fd(r1, . . . , rn) +
∑
i

f(r1, . . . , yi, . . . , rn),

where d(ri) = yi in (6), we get

af(r1, . . . , rn)uf(r1, . . . , rn) + af(r1, . . . , rn)2c

+ f(r1, . . . , rn)buf(r1, . . . , rn) + f(r1, . . . , rn)bf(r1, . . . , rn)c

− f(r1, . . . , rn)pf(r1, . . . , rn)− f(r1, . . . , rn)2p′

= qf(r1, . . . , rn)2+
(
fd(r1, . . . , rn)+

∑
i

f(r1, . . . , yi, . . . , rn)
)
f(r1, . . . , rn)(7)

+ f(r1, . . . , rn)
(
fd(r1, . . . , rn) +

∑
i

f(r1, . . . , yi, . . . , rn)
)
.

Then U satisfies the blended component

(8)

∑
i

f(r1, . . . , yi, . . . , rn)f(r1, . . . , rn)

+ f(r1, . . . , rn)
∑
i

f(r1, . . . , yi, . . . , rn) = 0.

Substituting y1 = r1 and yi = 0 for i ≥ 2, we get 2f(r1, . . . , rn)2 = 0. Since
characteristic of R is not 2, we get f(r1, . . . , rn)2 = 0, which gives a contradic-
tion.

Case 2. Suppose that F,G, T are generalized inner derivations and H is a
generalized derivation on R. By applying similar argument as we have used
above(see Case 1 of Lemma 3.11), we get our conclusions.
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Case 3. Suppose that F,H, T are generalized inner derivations and G is a
generalized derivation on R. By applying similar argument as we have used
above(see Case 1 of Lemma 3.11), we get our conclusions.

Case 4. Suppose that G,H, T are generalized inner derivations and F is a
generalized derivation on R. By applying similar argument as we have used
above(see Case 1 of Lemma 3.11), we get our conclusions. �

Lemma 3.12. Let R be a prime ring of characteristic different from 2 and F ,
G, H and T generalized derivations on R. Let U be the Utumi ring of quotients
of R with extended centroid C and f(x1, . . . , xn) be a non central multilinear
polynomial over C. If two of F , G, T , H are generalized inner derivations on
R such that

F (f(r))G(f(r))− f(r)H(f(r)) = T (f(r)2)

for all r = (r1, . . . , rn) ∈ Rn, then one of the following holds:

(i) there exist a ∈ C, b, b′, c ∈ U such that F (x) = ax, G(x) = bx + xb′,
H(x) = abx− x(c− ab′) and T (x) = xc for all x ∈ R;

(ii) there exist a, b, c ∈ U such that F (x) = xa, G(x) = bx, H(x) = abx−xc
and T (x) = xc for all x ∈ R;

(iii) there exist a, c ∈ U , b ∈ C such that F (x) = ax, G(x) = bx, H(x) = xc
and T (x) = abx− xc for all x ∈ R;

(iv) there exist b, c ∈ U , a ∈ C such that F (x) = ax, G(x) = xb, H(x) = xc
and T (x) = x(ab− c) for all x ∈ R;

(v) there exist a, b, p ∈ U , c, λ ∈ C such that F (x) = ax + xb, G(x) = cx,
H(x) = bcx− λx− xp and T (x) = λx+ acx+ xp for all x ∈ R;

(vi) f(r1, . . . , rn)2 is central valued on R and one of the following holds;
(a) there exist a ∈ C, b, b′, p, p′ ∈ U such that F (x) = ax, G(x) =

bx+ xb′, H(x) = abx+ xab′ − x(p+ p′) and T (x) = px+ xp′ for
all x ∈ R;

(b) there exist a, b, p, p′ ∈ U such that F (x) = xa, G(x) = bx, H(x) =
abx− x(p+ p′) and T (x) = px+ xp′ for all x ∈ R;

(c) there exist a, b, c, p ∈ U such that F (x) = ax, G(x) = xb, H(x) =
xc and T (x) = [p, x]− xc+ xab for all x ∈ R;

(d) there exist a, b, p, q ∈ U , c ∈ C such that F (x) = ax+ xb, G(x) =
cx, H(x) = c(bx+xa)−x(p+q) and T (x) = px+xq for all x ∈ R.

Proof. To prove this Lemma, we shall study the following cases.

Case 1. Suppose that F,G are generalized inner derivations and H, T are
generalized derivations on R. If one of H and T is a generalized inner derivation
on R, then by Lemma 3.11, we get our conclusions. Let F (x) = ax + xb,
G(x) = ux + xc, H(x) = px + d1(x) and T (x) = qx + d2(x), where d1, d2
are derivations on U for some a, b, u, c, p, q ∈ U . Assume that H and T both
are not generalized inner derivation on R, then d1 and d2 can not be an inner
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derivations. Thus U satisfies

(9)

af(r1, . . . , rn)uf(r1, . . . , rn) + af(r1, . . . , rn)2c

+ f(r1, . . . , rn)buf(r1, . . . , rn) + f(r1, . . . , rn)bf(r1, . . . , rn)c

− f(r1, . . . , rn)pf(r1, . . . , rn)− f(r1, . . . , rn)d1(f(r1, . . . , rn))

= qf(r1, . . . , rn)2 + d2(f(r1, . . . , rn))f(r1, . . . , rn)

+ f(r1, . . . , rn)d2(f(r1, . . . , rn)).

Now we shall study following two subcases:

Subcase-I. Let d1 and d2 be C-dependent modulo inner derivation of U . Then,
for some α1, α2 ∈ C and P ∈ U such that α1d1(x) + α2d2(x) = [P, x] for all
x ∈ U . If α1 = 0, then α2 can not be zero. This implies that d2 is an inner
derivation on R, a contradiction. Similarly, if α2 = 0, we get a contradiction.
Now we assume α1 and α2 both are non zero. This gives d1(x) = βd2(x)+[P ′, x]
for all x ∈ U , where β = −α−11 α2 and P ′ = α−11 P . Hence U satisfies

(10)

af(r1, . . . , rn)uf(r1, . . . , rn) + af(r1, . . . , rn)2c

+ f(r1, . . . , rn)buf(r1, . . . , rn) + f(r1, . . . , rn)bf(r1, . . . , rn)c

− f(r1, . . . , rn)pf(r1, . . . , rn)− βf(r1, . . . , rn)d2(f(r1, . . . , rn))

− f(r1, . . . , rn)
[
P ′, f(r1, . . . , rn)

]
= qf(r1, . . . , rn)2 + d2(f(r1, . . . , rn))f(r1, . . . , rn)

+ f(r1, . . . , rn)d2(f(r1, . . . , rn)).

By applying Kharchenko’s theorem [19] to (10), U satisfies the blended com-
ponent

(11)

− βf(r1, . . . , rn)
(∑

i

f(r1, . . . , yi, . . . , rn)
)

=
(∑

i

f(r1, . . . , yi, . . . , rn)
)
f(r1, . . . , rn)

+ f(r1, . . . , rn)
(∑

i

f(r1, . . . , yi, . . . , rn)
)

for all r1, . . . , rn ∈ R. Replacing yi with [w, ri] for some w /∈ C in (11), we have
that U satisfies

(12)
−βf(r1, . . . , rn)

[
w, f(r1, . . . , rn)

]
=
[
w, f(r1, . . . , rn)

]
f(r1, . . . , rn)

+ f(r1, . . . , rn)
[
w, f(r1, . . . , rn)

]
for all r1, . . . , rn ∈ R. This implies that

−f(r1, . . . , rn)βwf(r1, . . . , rn) + f(r1, . . . , rn)2(βw + w)− wf(r1, . . . , rn)2 = 0

for all r1, . . . , rn ∈ R. This gives that βw ∈ C. Since β 6= 0, hence it gives
w ∈ C, a contradiction.
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Subcase-II. Let d1 and d2 be C-independent. Then in (9) substituting the val-
ues of d1(f(r1, . . . , rn)) and d2(f(r1, . . . , rn)) and then applying Kharchenko’s
theorem [19], U satisfies the blended component

(13) f(r1, . . . , rn)
{∑

i

f(r1, . . . , yi, . . . , rn)
}

= 0.

In particular for y1 = r1 and y2 = · · · = yn = 0, we have f(r1, . . . , rn)2 = 0 a
contradiction.

Case 2. Suppose that F,H are generalized inner derivations and G, T are
generalized derivations on R. By applying similar argument as we have used
in above (see Case 1; Lemma 3.12), we get our conclusions.

Case 3. Suppose that F , T are generalized inner derivations and G, H are
generalized derivations on R. By using similar argument as we have used in
above (see Case 1; Lemma 3.12), we get our conclusions.

Case 4. Suppose that G, H are generalized inner derivations and F , T are
generalized derivations on R. By using similar argument as we have used in
above (see Case 1; Lemma 3.12), we get our conclusions.

Case 5. Suppose that G, T are generalized inner derivations and F , H are
generalized derivations on R. By using similar argument as we have used in
above (see Case 1; Lemma 3.12), we get our conclusions.

Case 6. Suppose that H, T are generalized inner derivations and F , G are
generalized derivations on R. By applying similar argument as we have used
above(see Case 1 of Lemma 3.12), we get our conclusions. �

Lemma 3.13. Let R be a prime ring of characteristic different from 2 and F ,
G, H, T generalized derivations on R. Let U be the Utumi ring of quotients
of R with extended centroid C and f(x1, . . . , xn) be a non central multilinear
polynomial over C. If one of F , G, T , H is a generalized inner derivation on
R such that

F (f(r))G(f(r))− f(r)H(f(r)) = T (f(r)2)

for all r = (r1, . . . , rn) ∈ Rn, then one of the following holds:

(i) there exist a ∈ C, b, b′, c ∈ U such that F (x) = ax, G(x) = bx + xb′,
H(x) = abx− x(c− ab′) and T (x) = xc for all x ∈ R;

(ii) there exist a, b, c ∈ U such that F (x) = xa, G(x) = bx, H(x) = abx−xc
and T (x) = xc for all x ∈ R;

(iii) there exist a, c ∈ U , b ∈ C such that F (x) = ax, G(x) = bx, H(x) = xc
and T (x) = abx− xc for all x ∈ R;

(iv) there exist b, c ∈ U , a ∈ C such that F (x) = ax, G(x) = xb, H(x) = xc
and T (x) = x(ab− c) for all x ∈ R;

(v) there exist a, b, p ∈ U , c, λ ∈ C such that F (x) = ax + xb, G(x) = cx,
H(x) = bcx− λx− xp and T (x) = λx+ acx+ xp for all x ∈ R;

(vi) f(r1, . . . , rn)2 is central valued on R and one of the following holds;
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(a) there exist a ∈ C, b, b′, p, p′ ∈ U such that F (x) = ax, G(x) =
bx+ xb′, H(x) = abx+ xab′ − x(p+ p′) and T (x) = px+ xp′ for
all x ∈ R;

(b) there exist a, b, p, p′ ∈ U such that F (x) = xa, G(x) = bx, H(x) =
abx− x(p+ p′) and T (x) = px+ xp′ for all x ∈ R;

(c) there exist a, b, c, p ∈ U such that F (x) = ax, G(x) = xb, H(x) =
xc and T (x) = [p, x]− xc+ xab for all x ∈ R;

(d) there exist a, b, p, q ∈ U , c ∈ C such that F (x) = ax+ xb, G(x) =
cx, H(x) = c(bx+xa)−x(p+q) and T (x) = px+xq for all x ∈ R.

Proof. To prove this Lemma, we shall study the following cases.

Case 1. Suppose that F is a generalized inner derivation on R and G, H, T
are generalized derivations on R. Let a, b, c, p, q ∈ U such that F (x) = ax+xb,
G(x) = cx + g(x), H(x) = px + h(x) and T (x) = qx + d(x), where g, h, d are
derivations on U . If one of g, h, d is an inner, then by Lemma 3.12, we get our
conclusions. Now suppose that all h, g and d are not inner derivations. Then
U satisfies

(14)

(
af(r1, . . . , rn) + f(r1, . . . , rn)b

)(
cf(r1, . . . , rn) + g(f(r1, . . . , rn))

)
− f(r1, . . . , rn)pf(r1, . . . , rn)− f(r1, . . . , rn)h(f(r1, . . . , rn))

= qf(r1, . . . , rn)2 + d(f(r1, . . . , rn))f(r1, . . . , rn)

+ f(r1, . . . , rn)d(f(r1, . . . , rn))

for all r1, . . . , rn ∈ R. Now we shall study the following cases.

Subcase-I. Let g, h and d be linearly C-dependent modulo inner derivations.
Then for some α, β, γ ∈ C such that αg(x) + βh(x) + γd(x) = [u, x] for all
x ∈ R and u ∈ U . If α = 0 = β, then γ can not be zero. Hence, it implies that
d is an inner derivation, a contradiction. If α = 0 = γ, then β can not be zero,
it gives h is an inner derivation, a contradiction. If β = 0 = γ, then α can not
be zero, gives g is an inner derivation, a contradiction. Hence two of α, β, γ
can not be zero.

If α = 0, β 6= 0, γ 6= 0, then h(x) = γ′d(x) + [u′, x], where γ′ = −β−1γ,
u′ = β−1u. Equation (14) reduces to

(15)

(
af(r1, . . . , rn) + f(r1, . . . , rn)b

)(
cf(r1, . . . , rn) + g(f(r1, . . . , rn))

)
− f(r1, . . . , rn)pf(r1, . . . , rn)− γ′f(r1, . . . , rn)d(f(r1, . . . , rn))

− f(r1, . . . , rn)
[
u′, f(r1, . . . , rn)

]
= qf(r1, . . . , rn)2 + d(f(r1, . . . , rn))f(r1, . . . , rn)

+ f(r1, . . . , rn)d(f(r1, . . . , rn)).

If g and d are linearly C-dependent modulo inner derivations, then α1g(x) +
α2d(x) = [p′, x] for some α1, α2 ∈ C, p′ ∈ U . Since g and d are not an inner
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derivations, hence α1, α2 can not be zero. Then g(x) = α2
′d(x) + [p′′, x], where

α2
′ = −α−11 α2, p′′ = α−11 p′ and then U satisfies

(16)

(
af(r1, . . . , rn)+f(r1, . . . , rn)b

)(
cf(r1, . . . , rn)+α2

′d(f(r1, . . . , rn))

+
[
p′′, f(r1, . . . , rn)

])
− f(r1, . . . , rn)pf(r1, . . . , rn)

− γ′f(r1, . . . , rn)d(f(r1, . . . , rn))− f(r1, . . . , rn)
[
u′, f(r1, . . . , rn)

]
= qf(r1, . . . , rn)2 + d(f(r1, . . . , rn))f(r1, . . . , rn)

+ f(r1, . . . , rn)d(f(r1, . . . , rn)).

By applying Kharchenko’s theorem [19] to (16) and then U satisfies the blended
component(

af(r1, . . . , rn) + f(r1, . . . , rn)b
)(
α2
′
∑
i

f(r1, . . . , yi, . . . , rn)
)

− γ′f(r1, . . . , rn)
∑
i

f(r1, . . . , yi, . . . , rn)

=
∑
i

f(r1, . . . , yi, . . . , rn)f(r1, . . . , rn)

+ f(r1, . . . , rn)
∑
i

f(r1, . . . , yi, . . . , rn).

In particular for y1 = r1 and yi = 0 for all i ≥ 2, then U satisfies

(17)
α2
′
(
af(r1, . . . , rn) + f(r1, . . . , rn)b

)
f(r1, . . . , rn)− γ′f(r1, . . . , rn)2

= 2f(r1, . . . , rn)2.

This relation is a particular case of Proposition 3.1, hence we get our conclu-
sions.

If g and d are linearly C-independent, then by using Kharchenko’s theorem
[19] to (15) and then U satisfies the blended component(

af(r1, . . . , rn) + f(r1, . . . , rn)b
)∑

i

f(r1, . . . , yi, . . . , rn) = 0,

where g(ri) = yi which implies that(
af(r1, . . . , rn) + f(r1, . . . , rn)b

)
f(r1, . . . , rn) = 0.

This is a particular case of Proposition 3.1, hence we get our conclusions.
If β = 0 and α 6= 0, γ 6= 0, then g(x) = γ1d(x) + [u1, x], where γ1 = −α−1γ,

u1 = α−1u. Equation (14) gives that(
af(r1, . . . , rn) + f(r1, . . . , rn)b

)(
cf(r1, . . . , rn) + γ1d(f(r1, . . . , rn))(18)

+
[
u1, f(r1, . . . , rn)

])
− f(r1, . . . , rn)pf(r1, . . . , rn)
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f(r1, . . . , rn)h(f(r1, . . . , rn))

= qf(r1, . . . , rn)2 + d(f(r1, . . . , rn))f(r1, . . . , rn)

+ f(r1, . . . , rn)d(f(r1, . . . , rn)).

If h and d are linearly C-dependent modulo inner derivations, then α1h(x) +
α2d(x) = [q′, x] for some α1, α2 ∈ C, q′ ∈ U . We notice that α1, α2 both will be
non zero, otherwise we get a contradiction. This gives h(x) = α2

′d(x) + [q′′, x],
where α2

′ = −α−11 α2, q′′ = α−11 q′. Hence U satisfies

(19)

(
af(r1, . . . , rn) + f(r1, . . . , rn)b

)(
cf(r1, . . . , rn) + γ1d(f(r1, . . . , rn))

+
[
u1, f(r1, . . . , rn)

])
− f(r1, . . . , rn)pf(r1, . . . , rn)

− α2
′f(r1, . . . , rn)d(f(r1, . . . , rn))− f(r1, . . . , rn)

[
q′′, f(r1, . . . , rn)

]
= qf(r1, . . . , rn)2 + d(f(r1, . . . , rn))f(r1, . . . , rn)

+ f(r1, . . . , rn)d(f(r1, . . . , rn)).

Applying Kharchenko’s theorem [19], U satisfies the blended component

(20)

γ1

(
af(r1, . . . , rn) + f(r1, . . . , rn)b

)∑
i

f(r1, . . . , yi, . . . , rn)

− α2
′f(r1, . . . , rn)

∑
i

f(r1, . . . , yi, . . . , rn)

=
∑
i

f(r1, . . . , yi, . . . , rn)f(r1, . . . , rn)

+ f(r1, . . . , rn)
∑
i

f(r1, . . . , yi, . . . , rn),

where yi = d(ri). This implies that

(21)
γ1

(
af(r1, . . . , rn) + f(r1, . . . , rn)b

)
f(r1, . . . , rn)− α2

′f(r1, . . . , rn)2

= 2f(r1, . . . , rn)2.

Since this equations similar to the equation (17), hence we get our conclusions.
If h and d are linearly C-independent, then by applying Kharchenko’s the-

orem [19] to (18) and then U satisfies the blended component

f(r1, . . . , rn)
∑
i

f(r1, . . . , zi, . . . , rn) = 0,

where zi = h(ri) which implies that f(r1, . . . , rn)2 = 0, a contradiction.
If γ = 0 and α 6= 0, β 6= 0, then g(x) = β′h(x) + [u′, x], where β′ = −α−1β,

u′ = α−1u. Equation (14) gives that(
af(r1, . . . , rn) + f(r1, . . . , rn)b

)(
cf(r1, . . . , rn) + β′h(f(r1, . . . , rn))(22)
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+
[
u′, f(r1, . . . , rn)

])
− f(r1, . . . , rn)pf(r1, . . . , rn)

− f(r1, . . . , rn)h(f(r1, . . . , rn))

= qf(r1, . . . , rn)2 + d(f(r1, . . . , rn))f(r1, . . . , rn)

+ f(r1, . . . , rn)d(f(r1, . . . , rn)).

If d and h are linearly C-independent, then by using Kharchenko’s theorem
[19], U satisfies the blended component

(23)

∑
i

f(r1, . . . , yi, . . . , rn)f(r1, . . . , rn)

+ f(r1, . . . , rn)
∑
i

f(r1, . . . , yi, . . . , rn),

where yi = d(ri). In particular for y1 = r1 and yi = 0 for all i = 2, 3, . . . , n, we
get 2f(r1, . . . , rn)2 = 0. Since char(R) 6= 2, it gives that f(r1, . . . , rn)2 = 0, a
contradiction.

Now we shall assume the case that none of α, β and γ is zero. Then

g(x) = β′h(x) + γ′d(x) + [u′, x]

for all x ∈ R, where β′ = −α−1β, γ′ = −α−1γ and u′ = α−1u. Then relation
(14) reduces to

(24)

(
af(r1, . . . , rn) + f(r1, . . . , rn)b

)(
cf(r1, . . . , rn) + β′h(f(r1, . . . , rn))

+ γ′d(f(r1, . . . , rn)) +
[
u′, f(r1, . . . , rn)

])
− f(r1, . . . , rn)pf(r1, . . . , rn)− f(r1, . . . , rn)h(f(r1, . . . , rn))

= qf(r1, . . . , rn)2 + d(f(r1, . . . , rn))f(r1, . . . , rn)

+ f(r1, . . . , rn)d(f(r1, . . . , rn))

for all r1, . . . , rn ∈ R. If d and h are linearly C-dependent modulo inner
derivations on U , then for some α1, α2 ∈ C and p′ ∈ U such that α1d(x) +
α2h(x) = [p′, x] for all x ∈ U . Since none of d and h are inner, hence α1

and α2 both are non zero. Then h(x) = α′1d(x) + [p′′, x] for all x ∈ U , where
α′1 = −α−12 α1 and p′′ = α−12 p′. Thus the equation (24) reduces to

(25)

(
af(r1, . . . , rn)+f(r1, . . . , rn)b

)(
cf(r1, . . . , rn)+β′α1

′d(f(r1, . . . , rn))

+ β′
[
p′′, f(r1, . . . , rn)

]
+ γ′d(f(r1, . . . , rn)) +

[
u′, f(r1, . . . , rn)

])
− f(r1, . . . , rn)pf(r1, . . . , rn)− α1

′f(r1, . . . , rn)d(f(r1, . . . , rn))

− f(r1, . . . , rn)
[
p′′, f(r1, . . . , rn)

]
= qf(r1, . . . , rn)2 + d(f(r1, . . . , rn))f(r1, . . . , rn)

+ f(r1, . . . , rn)d(f(r1, . . . , rn))
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for all r1, . . . , rn ∈ R. By using Kharchenko’s theorem [19], we can replace
d(f(r1, . . . , rn)) with fd(r1, . . . , rn)+

∑
i

f(r1, . . . , yi, . . . , rn), where d(ri) = yi,

then U satisfies(
af(r1, . . . , rn) + f(r1, . . . , rn)b

)(
cf(r1, . . . , rn) + β′α1

′
(
fd(r1, . . . , rn)

+
∑
i

f(r1, . . . , yi, . . . , rn)
)

+ β′
[
p′′, f(r1, . . . , rn)

]
+ γ′

(
fd(r1, . . . , rn)

+
∑
i

f(r1, . . . , yi, . . . , rn)
)

+
[
u′, f(r1, . . . , rn)

])
− f(r1, . . . , rn)pf(r1, . . . , rn)− α1

′f(r1, . . . , rn)
(
fd(r1, . . . , rn)

+
∑
i

f(r1, . . . , yi, . . . , rn)
)
− f(r1, . . . , rn)

[
p′′, f(r1, . . . , rn)

]
= qf(r1, . . . , rn)2 +

(
fd(r1, . . . , rn) +

∑
i

f(r1, . . . , yi, . . . , rn)
)
f(r1, . . . , rn)(26)

+ f(r1, . . . , rn)
(
fd(r1, . . . , rn) +

∑
i

f(r1, . . . , yi, . . . , rn)
)
.

Hence, U satisfies the blended component

(27)

(
β′α1

′ + γ′
)(
af(r1, . . . , rn) + f(r1, . . . , rn)b

)∑
i

f(r1, . . . , yi, . . . , rn)

− α1
′f(r1, . . . , rn)

∑
i

f(r1, . . . , yi, . . . , rn)

=
∑
i

f(r1, . . . , yi, . . . , rn)f(r1, . . . , rn) + f(r1, . . . , rn)
∑
i

f(r1, . . . , yi, . . . , rn).

In particular for y1 = r1 and yi = 0 for all i ≥ 2, then U satisfies

(28)

(
β′α1

′ + γ′
)(
af(r1, . . . , rn) + f(r1, . . . , rn)b

)
f(r1, . . . , rn)

− α1
′f(r1, . . . , rn)2 = 2f(r1, . . . , rn)2.

Since this is a particular case of Proposition 3.1, hence we get our conclusions.
If d and h are linearly C-independent, then by using Kharchenko’s theorem

[19], we have(
af(r1, . . . , rn) + f(r1, . . . , rn)b

)(
cf(r1, . . . , rn) + β′fh(r1, . . . , rn)

+ β′
∑
i

f(r1, . . . , zi, . . . , rn) + γ′fd(r1, . . . , rn) + γ′
∑
i

f(r1, . . . , yi, . . . , rn)

+
[
u′, f(r1, . . . , rn)

])
− f(r1, . . . , rn)pf(r1, . . . , rn)

− f(r1, . . . , rn)
(
fh(r1, . . . , rn) +

∑
i

f(r1, . . . , zi, . . . , rn)
)
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= qf(r1, . . . , rn)2 +
(
fd(r1, . . . , rn)

+
∑
i

f(r1, . . . , yi, . . . , rn)
)
f(r1, . . . , rn) + f(r1, . . . , rn)

(
fd(r1, . . . , rn)

+
∑
i

f(r1, . . . , yi, . . . , rn)
)

for all r1, . . . , rn ∈ R, where d(ri) = yi and h(ri) = zi. In particular U satisfies

β′
(
af(r1, . . . , rn) + f(r1, . . . , rn)b

)∑
i

f(r1, . . . , zi, . . . , rn)

− f(r1, . . . , rn)
∑
i

f(r1, . . . , zi, . . . , rn) = 0.

In particular for z1 = r1 and zi = 0 for all i ≥ 2, then we have

β′
(
af(r1, . . . , rn) + f(r1, . . . , rn)b

)
f(r1, . . . , rn)− f(r1, . . . , rn)2 = 0.

This relation is a particular case of Proposition 3.1, which gives our conclusions.

Subcase-II. Let g, h and d be linearly C-independent modulo inner derivation.
Then by using Kharchenko’s theorem [19], the equation (14) implies that

(29)

(
af(r1, . . . , rn) + f(r1, . . . , rn)b

)(
cf(r1, . . . , rn) + fg(r1, . . . , rn)

+
∑
i

f(r1, . . . , yi, . . . , rn)
)
− f(r1, . . . , rn)pf(r1, . . . , rn)

− f(r1, . . . , rn)
(
fh(r1, . . . , rn) +

∑
i

f(r1, . . . , zi, . . . , rn)
)

= qf(r1, . . . , rn)2 +
(
fd(r1, . . . , rn)

+
∑
i

f(r1, . . . , wi, . . . , rn)
)
f(r1, . . . , rn) + f(r1, . . . , rn)

(
fd(r1, . . . , rn)

+
∑
i

f(r1, . . . , wi, . . . , rn)
)
,

where g(ri) = yi, h(ri) = zi and d(ri) = wi. Then U satisfies the blended
component∑
i

f(r1, . . . , wi, . . . , rn)
)
f(r1, . . . , rn) + f(r1, . . . , rn)

∑
i

f(r1, . . . , wi, . . . , rn),

which is the same as the equation (23), hence we get our result.

Case 2. Suppose that G is a generalized inner derivation and F , H, T are
generalized derivations on R. By using similar argument as we have used in
above (see Case 1; Lemma 3.13), we get our conclusions.
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Case 3. Suppose that H is a generalized inner derivation and F , G, T are
generalized derivations on R. By using similar argument as we have used in
above (see Case 1; Lemma 3.13), we get our conclusions.

Case 4. Suppose that T is a generalized inner derivation and F , G, H are
generalized derivations on R. By using similar argument as we have used in
above (see Case 1; Lemma 3.13), we get our conclusions. �

Now we are in a position to prove our main results.

Proof of Theorem 2.1. If one of F , G, H and T is a generalized inner derivation,
then by Lemma 3.13, we get our conclusions. Suppose that none of F , G, H
and T is a generalized inner derivation. For some a, b, c, p ∈ U such that
F (x) = ax+ d(x), G(x) = bx+ g(x), H(x) = cx+ h(x) and T (x) = px+ δ(x),
where d, g, h, δ are derivations on U . Then U satisfies

(30)

(
af(r1, . . . , rn) + d(f(r1, . . . , rn))

)(
bf(r1, . . . , rn) + g(f(r1, . . . , rn))

)
− f(r1, . . . , rn)cf(r1, . . . , rn)− f(r1, . . . , rn)h(f(r1, . . . , rn))

= pf(r1, . . . , rn)2 + δ(f(r1, . . . , rn))f(r1, . . . , rn)

+ f(r1, . . . , rn)δ(f(r1, . . . , rn)).

We shall study the following cases.

Case 1. Let d, g, h and δ be linearly C-dependent modulo inner deriva-
tions on U . Then we have α1d(x) + α2g(x) + α3h(x) + α4δ(x) = [u, x], where
α1, α2, α3, α4 ∈ C and u ∈ U . If at a time any three coefficients are zero, then
we shall get a contradiction. Now we assume two coefficients are zero.

Subcase-I. If α1 = 0 = α2 and α3 6= 0, α4 6= 0, then we have h(x) =
α′4δ(x) + [u′, x], where α′4 = −α−13 α4, u′ = α−13 u. Then (30) gives that

(31)

(
af(r1, . . . , rn)+d(f(r1, . . . , rn))

)(
bf(r1, . . . , rn)+g(f(r1, . . . , rn))

)
− f(r1, . . . , rn)cf(r1, . . . , rn)− α′4f(r1, . . . , rn)δ(f(r1, . . . , rn))

− f(r1, . . . , rn)
[
u′, f(r1, . . . , rn)

]
= pf(r1, . . . , rn)2 + δ(f(r1, . . . , rn))f(r1, . . . , rn)

+ f(r1, . . . , rn)δ(f(r1, . . . , rn)).

If d, g and δ are linearly C-independent, then by applying similar argument
as we have used in above (see Subcase-II, Case 1 of Lemma 3.13) we get our
conclusions.

If d, g and δ are linearly C-dependent, then by using similar argument as
we have used in Subcase-I of Case 1 of Lemma 3.13, we get our conclusions.

Subcase-II. If α1 = 0 = α3 and α2 6= 0, α4 6= 0, then by using similar
argument as we have used in above (see Subcase-I, Case 1 of proof of Theorem
2.1), we get our conclusions.
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Subcase-III. If α1 = 0 = α4 and α2 6= 0, α3 6= 0, then by using similar
argument as we have used in above (see Subcase-I, Case 1 of proof of Theorem
2.1), we get our conclusions.

Subcase-IV. If α2 = 0 = α3 and α1 6= 0, α4 6= 0, then by using similar
argument as we have used in above (see Subcase-I, Case 1 of proof of Theorem
2.1), we get our conclusions.

Subcase-V. If α2 = 0 = α4 and α1 6= 0, α3 6= 0, then by using similar
argument as we have used in above (see Subcase-I, Case 1 of proof of Theorem
2.1), we get our conclusions.

Subcase-VI. If α3 = 0 = α4 and α1 6= 0, α2 6= 0, then by using similar
argument as we have used in above (see Subcase-I, Case 1 of proof of Theorem
2.1), we get our conclusions.

Now we suppose that only one coefficient is zero. Then we have the following.

Subcase-VII. If α1 = 0 and α2 6= 0, α3 6= 0, α4 6= 0, then g(x) = α′3h(x) +
α′4δ(x) + [u′, x], where α′3 = −α−12 α3, α′4 = −α−12 α4, u′ = α−12 u. Then (30)
gives that

(32)

(
af(r1, . . . , rn) + d(f(r1, . . . , rn))

)(
bf(r1, . . . , rn) + α′3h(f(r1, . . . , rn))

+α′4δ(f(r1, . . . , rn)) +
[
u′, f(r1, . . . , rn)

])
− f(r1, . . . , rn)cf(r1, . . . , rn)

− f(r1, . . . , rn)h(f(r1, . . . , rn))

= pf(r1, . . . , rn)2 + δ(f(r1, . . . , rn))f(r1, . . . , rn)

+ f(r1, . . . , rn)δ(f(r1, . . . , rn)).

If d, h and δ are linearly C-independent, then by applying similar argument
as we have used in above (see Subcase-II, Case 1 of Lemma 3.13) we get our
conclusions.

If d, h and δ are linearly C-dependent modulo inner derivations, then using
parallel argument as we have used in the Subcase-I of Case 1 of Lemma 3.13,
we get our conclusions.

Subcase-VIII. If α2 = 0 and α1 6= 0, α3 6= 0, α4 6= 0, then by using similar ar-
gument as we have used in above (see Subcase-VII, Case 1 of proof of Theorem
2.1), we get our conclusions.

Subcase-IX. If α3 = 0 and α1 6= 0, α2 6= 0, α4 6= 0, then by using similar ar-
gument as we have used in above (see Subcase-VII, Case 1 of proof of Theorem
2.1), we get our conclusions.

Subcase-X. If α4 = 0 and α1 6= 0, α2 6= 0, α3 6= 0, then by using similar argu-
ment as we have used in above (see Subcase-VII, Case 1 of proof of Theorem
2.1), we get our conclusions.

Now we consider that none of α1, α2, α3, α4 is zero. It implies that d(x) =
α2
′g(x) + α3

′h(x) + α4
′δ(x) + [u′, x], where α2

′ = −α−11 α2, α3
′ = −α−11 α3,
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α4
′ = −α−11 α4 and u′ = α−11 u and then (30) reduces to

(33)

(
af(r1, . . . , rn) + α2

′g(f(r1, . . . , rn)) + α3
′h(f(r1, . . . , rn))

+ α4
′δ(f(r1, . . . , rn)) +

[
u′, f(r1, . . . , rn)

])
(
bf(r1, . . . , rn) + g(f(r1, . . . , rn))

)
− f(r1, . . . , rn)cf(r1, . . . , rn)− f(r1, . . . , rn)h(f(r1, . . . , rn))

= pf(r1, . . . , rn)2 + δ(f(r1, . . . , rn))f(r1, . . . , rn)

+ f(r1, . . . , rn)δ(f(r1, . . . , rn)).

If g, h and δ are linearly C-independent, then by applying similar argument
as we have used in above (see Subcase-II, Case 1 of Lemma 3.13) we get our
conclusions.

If g, h, δ are linearly C-dependent modulo inner derivations, then by apply-
ing similar argument as we have used in above (see Subcase-I, Case 1 of Lemma
3.13) we get our conclusions.

Case 2. Let d, g, h, δ be linearly C-independent. Then by using kharchenko’s
theorem [19] in (30), U satisfies the blended component

f(r1, . . . , rn)
∑
i

f(r1, . . . , zi, . . . , rn) = 0,

where zi = h(ri), which implies that f(r1, . . . , rn)2 = 0, a contradiction. Hence
proof of the theorem is complete. �

The following corollaries are immediate consequences of our Theorem 2.1.

Corollary 3.14. Let R be a prime ring with characteristic different from
2 and U be its Utumi ring of quotients, extended centroid C = Z(U) and
f(x1, . . . , xn) be a non central multilinear polynomial over C. Suppose that d1,
d2 and d3 are derivations on R such that d1(f(r))d2(f(r)) = d3(f(r)2) for all
r = (r1, . . . , rn), where r1, . . . , rn ∈ R, then one of the following holds:

(i) d1 = 0 = d3;
(ii) d2 = 0 = d3;

(iii) there exists a ∈ U such that f(x1, . . . , xn)2 is central valued on R and
either d1 = 0 = d2, d3(x) = [a, x] or d2 = 0, d3(x) = [a, x] for all
x ∈ R.

In particular for F = H = T = d, where d is a derivation and G = I, the
identity mapping on R in our Theorem 2.1, we obtain the following.

Corollary 3.15. Let R be a prime ring with characteristic different from 2 and
U be its Utumi ring of quotients, extended centroid C = Z(U) and f(x1, . . . , xn)
be a non central multilinear polynomial over C. Suppose that d1 and d2 are two
derivations on R such that [d1(f(r)), f(r)] = d2(f(r)2) for all r = (r1, . . . , rn),
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where r1, . . . , rn ∈ R, then either d1 = 0 = d2 or there exists a ∈ U such that
f(x1, . . . , xn)2 is central valued on R and d1 = 0, d2 = [a, x] for all x ∈ R.
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