• Title/Summary/Keyword: K-Vertices

Search Result 424, Processing Time 0.025 seconds

EXTREMAL F-INDICES FOR BICYCLIC GRAPHS WITH k PENDANT VERTICES

  • Amin, Ruhul;Nayeem, Sk. Md. Abu
    • The Pure and Applied Mathematics
    • /
    • v.27 no.4
    • /
    • pp.171-186
    • /
    • 2020
  • Long back in 1972, it was shown that the sum of the squares of vertex degrees and the sum of cubes of vertex degrees of a molecular graph both have large correlations with total 𝜋-electron energy of the molecule. Later on, the sum of squares of vertex degrees was named as first Zagreb index and became one of the most studied molecular graph parameter in the field of chemical graph theory. Whereas, the other sum remained almost unnoticed until recently except for a few occasions. Thus it got the name "forgotten" index or F-index. This paper investigates extremal graphs with respect to F-index among the class of bicyclic graphs with n vertices and k pendant vertices, 0 ≤ k ≤ n - 4. As consequences, we obtain the bicyclic graphs with largest and smallest F-indices.

ON THE SCHULTZ POLYNOMIAL AND HOSOYA POLYNOMIAL OF CIRCUMCORONENE SERIES OF BENZENOID

  • Farahani, Mohammad Reza
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.5_6
    • /
    • pp.595-608
    • /
    • 2013
  • Let G = (V, E) be a simple connected graph. The sets of vertices and edges of G are denoted by V = V (G) and E = E(G), respectively. In such a simple molecular graph, vertices represent atoms and edges represent bonds. The distance between the vertices $u$ and $v$ in V (G) of graph G is the number of edges in a shortest path connecting them, we denote by $d(u,v)$. In graph theory, we have many invariant polynomials for a graph G. In this paper, we focus on the Schultz polynomial, Modified Schultz polynomial, Hosoya polynomial and their topological indices of a molecular graph circumcoronene series of benzenoid $H_k$ and specially third member from this family. $H_3$ is a basic member from the circumcoronene series of benzenoid and its conclusions are base calculations for the Schultz polynomial and Hosoya polynomial of the circumcoronene series of benzenoid $H_k$ ($k{\geq}3$).

Vertex disjoint covering cycle set in hypercubes (하이퍼큐브에서의 정점을 공유하지 않는 커버링사이클 집합)

  • Park, Won;Lim, Hyeong-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2003.11b
    • /
    • pp.11-14
    • /
    • 2003
  • In interconnection network for parallel processing, the cycle partitioning problem for parallel transmission with faulty vertieces or edges is very important. In this paper, we assume that k($\leq$m-1) edges do not share any vertices of m dimension hypercube Q$_{m}$ and show that it is possible to construct a cycle set which consists of k cycles covering all the vertices of the hypercube and one cycle including one of the given edges. This cycle set can be used to parallel transmission between two vertices joined by faulty edges.s.

  • PDF

Fault Diameter and Mutually Disjoint Paths in Multidimensional Torus Networks (다차원 토러스 네트워크의 고장지름과 서로소인 경로들)

  • Kim, Hee-Chul;Im, Do-Bin;Park, Jung-Heum
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.5_6
    • /
    • pp.176-186
    • /
    • 2007
  • An interconnection network can be represented as a graph where a vertex corresponds to a node and an edge corresponds to a link. The diameter of an interconnection network is the maximum length of the shortest paths between all pairs of vertices. The fault diameter of an interconnection network G is the maximum length of the shortest paths between all two fault-free vertices when there are $_k(G)-1$ or less faulty vertices, where $_k(G)$ is the connectivity of G. The fault diameter of an R-regular graph G with diameter of 3 or more and connectivity ${\tau}$ is at least diam(G)+1 where diam(G) is the diameter of G. We show that the fault diameter of a 2-dimensional $m{\times}n$ torus with $m,n{\geq}3$ is max(m,n) if m=3 or n=3; otherwise, the fault diameter is equal to its diameter plus 1. We also show that in $d({\geq}3)$-dimensional $k_1{\times}k_2{\times}{\cdots}{\times}k_d$ torus with each $k_i{\geq}3$, there are 2d mutually disjoint paths joining any two vertices such that the lengths of all these paths are at most diameter+1. The paths joining two vertices u and v are called to be mutually disjoint if the common vertices on these paths are u and v. Using these mutually disjoint paths, we show that the fault diameter of $d({\geq}3)$-dimensional $k_1{\times}k_2{\times}{\cdots}{\times}k_d$ totus with each $k_i{\geq}3$ is equal to its diameter plus 1.

ON PATHOS BLOCK LINE CUT-VERTEX GRAPH OF A TREE

  • Nagesh, Hadonahalli Mudalagiraiah
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • A pathos block line cut-vertex graph of a tree T, written P BLc(T), is a graph whose vertices are the blocks, cut-vertices, and paths of a pathos of T, with two vertices of P BLc(T) adjacent whenever the corresponding blocks of T have a vertex in common or the edge lies on the corresponding path of the pathos or one corresponds to a block Bi of T and the other corresponds to a cut-vertex cj of T such that cj is in Bi; two distinct pathos vertices Pm and Pn of P BLc(T) are adjacent whenever the corresponding paths of the pathos Pm(vi, vj) and Pn(vk, vl) have a common vertex. We study the properties of P BLc(T) and present the characterization of graphs whose P BLc(T) are planar; outerplanar; maximal outerplanar; minimally nonouterplanar; eulerian; and hamiltonian. We further show that for any tree T, the crossing number of P BLc(T) can never be one.

THE TOTAL GRAPH OF A COMMUTATIVE RING WITH RESPECT TO PROPER IDEALS

  • Abbasi, Ahmad;Habibi, Shokoofe
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.1
    • /
    • pp.85-98
    • /
    • 2012
  • Let R be a commutative ring and I its proper ideal, let S(I) be the set of all elements of R that are not prime to I. Here we introduce and study the total graph of a commutative ring R with respect to proper ideal I, denoted by T(${\Gamma}_I(R)$). It is the (undirected) graph with all elements of R as vertices, and for distinct x, y ${\in}$ R, the vertices x and y are adjacent if and only if x + y ${\in}$ S(I). The total graph of a commutative ring, that denoted by T(${\Gamma}(R)$), is the graph where the vertices are all elements of R and where there is an undirected edge between two distinct vertices x and y if and only if x + y ${\in}$ Z(R) which is due to Anderson and Badawi [2]. In the case I = {0}, $T({\Gamma}_I(R))=T({\Gamma}(R))$; this is an important result on the definition.

THE IDENTITY-SUMMAND GRAPH OF COMMUTATIVE SEMIRINGS

  • Atani, Shahabaddin Ebrahimi;Hesari, Saboura Dolati Pish;Khoramdel, Mehdi
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.189-202
    • /
    • 2014
  • An element r of a commutative semiring R with identity is said to be identity-summand if there exists $1{\neq}a{\in}R$ such that r+a = 1. In this paper, we introduce and investigate the identity-summand graph of R, denoted by ${\Gamma}(R)$. It is the (undirected) graph whose vertices are the non-identity identity-summands of R with two distinct vertices joint by an edge when the sum of the vertices is 1. The basic properties and possible structures of the graph ${\Gamma}(R)$ are studied.

Analysis of the network robustness based on the centrality of vertices in the graph

  • Jeong, Changkwon;Han, Chi-Geun;Lee, Sang-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.3
    • /
    • pp.61-67
    • /
    • 2017
  • This paper analyzes the robustness of the network based on the centrality of vertices in the graph. In this paper, a random graph is generated and a modified graph is constructed by adding or removing vertices or edges in the generated random graph. And then we analyze the robustness of the graph by observing changes in the centrality of the random graph and the modified graph. In the process modifying a graph, we changes some parts of the graph, which has high values of centralities, not in the whole. We study how these additional changes affect the robustness of the graph when changes occurring a group that has higher centralities than in the whole.

Color Data Compression for Three-dimensional Mesh Models Using Connectivity and Geometry Information (연결성 정보와 기하학 정보를 이용한 삼차원 메쉬 모델의 색상 정보 압축 방법)

  • Yoon, Young-Suk;Kim, Sung-Yeol;Ho, Yo-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.745-746
    • /
    • 2006
  • In this paper, we propose a new predictive coding scheme for color data of three-dimensional (3-D) mesh models. We exploit connectivity and geometry information to improve coding efficiency. After ordering all vertices in a 3-D mesh model with a vertex traversal technique, we employ a geometry predictor to compress the color data. The predicted color can be acquired by a weighted sum of reconstructed colors for adjacent vertices using both angles and distances between the current vertex and adjacent vertices.

  • PDF