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THE IDENTITY-SUMMAND GRAPH OF COMMUTATIVE

SEMIRINGS

Shahabaddin Ebrahimi Atani, Saboura Dolati Pish Hesari,
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Abstract. An element r of a commutative semiring R with identity is
said to be identity-summand if there exists 1 6= a ∈ R such that r+a = 1.
In this paper, we introduce and investigate the identity-summand graph
of R, denoted by Γ(R). It is the (undirected) graph whose vertices are
the non-identity identity-summands of R with two distinct vertices joint
by an edge when the sum of the vertices is 1. The basic properties and
possible structures of the graph Γ(R) are studied.

1. Introduction

One of the associated graphs to a ring R is the zero-divisor graph; it is a
simple graph with vertex set Z(R) \ {0}, and two vertices x and y are adjacent
if and only if xy = 0 which is due to Anderson and Livingston [8]. This graph
was first introduced by Beck, in [11], where all the elements of R are considered
as the vertices. Since then, there has been a lot of interest in this subject and
various papers were published establishing different properties of these graphs
as well as relations between graphs of various extensions [3, 8-9, 18, 20-21].
Recently, the study of graphs of rings are extended to include semirings as in
[16].

As a generalization of rings, structure of semirings have proven to be useful
tools in various disciplines. They have important applications in mathematics
and theoretical computer science [19, 22]. From now on let R be a commutative
semiring with identity. We define another graph on R, Γ(R), with vertices as
elements of S∗(R) = S(R)\{1} (where S(R) = {r ∈ R : r+a = 1 for some 1 6=
a ∈ R}), where two distinct vertices a and b are adjacent if and only if a+b = 1.
We will make an intensive study on the graph Γ(R). We recommend to the
reader the references [1-2, 4-7, 10, 13-15] where “+” is used in order to connect
edges when R is a commutative ring, however this graph is of a different kind.
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Here is a brief summary of our paper. The main purpose of Section 2 is
to investigate some properties of I-semirings and its minimal prime co-ideals
which be useful in the later sections. In Section 3, we look at the connectedness,
the diameter and the girth of the graph Γ(R). We completely characterize the
diameter and the girth of this graph. Section 4 is devoted when the graph Γ(R)
is a complete bipartite graph. Indeed, it is shown that for an I-semiring R,
Γ(R) is complete bipartite if and only if there exist two distinct prime co-ideals
P1 and P2 of R such that P1 ∩ P2 = {1}. In Section 5, we will investigate
chromatic number and clique number of the graph Γ(R). For example, it is
shown that for an I-semiring R, χ(Γ(R)) is finite if and only if the co-ideal {1}
is a finite intersection of prime co-ideals. Section 6 is devoted to study planar
property of Γ(R). A number of basic results of planar property of Γ(R) are
given.

In order to make this paper easier to follow, we recall in this section various
notions which will be used in the sequel. For a graph Γ by E(Γ) and V (Γ)
we denote the set of all edges and vertices, respectively. We recall that a
graph is connected if there exists a path connecting any two distinct vertices.
The distance between two distinct vertices a and b, denoted by d(a, b), is the
length of the shortest path connecting them (if such a path does not exist, then
d(a, b) = ∞ and d(a, a) = 0). The diameter of graph Γ, denoted by diam(Γ),
is equal to sup{d(a, b) : a, b ∈ V (Γ)}. A graph is complete if it is connected
with diameter less than or equal to one. We denote the complete graph on
n vertices by Kn. The girth of a graph Γ, denoted g(Γ), is the length of a
shortest cycle in Γ, provided Γ contains a cycle; otherwise; g(Γ) = ∞. An edge
for which the two ends are the same is called a loop at the common vertex.
For r a nonnegative integer, an r-partite graph is one whose vertex set can be
partitioned into r subsets so that no edge has both ends in any one subset. A
complete r-partite graph is one in which each vertex is joined to every vertex
that is not in the same subset. The complete bipartite (i.e., 2-partite) with part
sizes m and n is denoted by Km,n. We will sometimes call K1,n a star graph.
We define a coloring of a graph G to be an assignment of colors (elements of
some set) to vertices of G, one color to each vertex, so that adjacent vertices
are assigned distinct colors. If n colors are used, then the coloring is referred
to as an n-coloring. If there exists an n-coloring of a graph G, then G is called
n-colorable. The minimum n for which a graph G is n-colorable is called the
chromatic number of G and is denoted by χ(G). A clique of a graph is its
maximal complete subgraph and the number of vertices in the largest clique of
graph G, denoted by w(G), is called the clique number of G.

A commutative semiring R is defined as an algebraic system (R,+, ·) such
that (R,+) and (R, ·) are commutative semigroups, connected by a(b + c) =
ab+ac for all a, b, c ∈ R, and there exist 0, 1 ∈ R such that r+0 = r, r0 = 0r = 0
and r1 = 1r = r for each r ∈ R. In this paper all semirings considered will be
assumed to be commutative semirings with non-zero identity.
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Definition 1.1. Let R be a semiring.
(1) A non-empty subset I of R is called co-ideal, if it is closed under mul-

tiplication and satisfies the condition r + a ∈ I for all a ∈ I and r ∈ R. A
co-ideal I of R is called strong co-ideal provided that 1 ∈ I (clearly, 0 ∈ I if
and only if I = R) [17, 19, 22].

(2) A co-ideal I of R is called subtractive if x, xy ∈ I, then y ∈ I for all
x, y ∈ R (so every subtractive co-ideal is a strong co-ideal) [17].

(3) A proper co-ideal P of R is called prime if x + y ∈ P , then x ∈ P or
y ∈ P for all x, y ∈ R [17].

(4) If D is an arbitrary nonempty subset of R, then the set F (D) consisting
of all elements of R of the form d1d2 · · · dn + r (with di ∈ D for all 1 ≤ i ≤ n
and r ∈ R) is a co-ideal of R containing D [17, 19, 22].

(5) A semiring R is called co-semidomain, if a+ b = 1 (a, b ∈ R), then either
a = 1 or b = 1 [17].

A strong co-ideal I of a semiring R is called a partitioning strong co-ideal (=
Q-strong co-ideal) if there exists a subset Q of R such that R =

⋃
{qI : q ∈ Q},

where qI = {qt : t ∈ I} and if q1, q2 ∈ Q, then (q1I) ∩ (q2I) 6= ∅ if and only if
q1 = q2. Let I be a Q-strong co-ideal of a semiring R and let R/I = {qI : q ∈
Q}. Then R/I forms a semiring under the binary operations ⊕ and ⊙ defined
as follows: (q1I)⊕ (q2I) = q3I, where q3 is the unique element in Q such that
(q1I + q2I) ⊆ q3I, and (q1I) ⊙ (q2I) = q3I, where q3 is the unique element in
Q such that (q1q2)I ⊆ q3I (note that q1I = q2I if and only if q1 = q2). Let qe
be the unique element in Q such that 1 ∈ qeI. Then qeI = I and qeI is the
identity of R/I [17].

2. Some properties of I-semirings

In this section we collect some properties concerning I-semirings which are
useful in the later sections.

Definition 2.1. A semiring R is said to be identity-semiring (= I-semiring)
if 1 + x = 1 for all x ∈ R.

One can easily show that R is an I-semiring if and only if {1} is a strong
co-ideal of R.

Example 2.2. (1) Let X = {a, b, c} and R = (P (X),∪,∩) a semiring with
1R = X , where P (X) = the set of all subsets of X . It is easy to see that R is
an I-semiring.

(2) Assume that Z+ is the set of all non-negative integers and let R = Z
+ ×

Z
+. Then (R,+, ·) with the usual operations of addition and multiplication is

a semiring which is not an I-semiring.

The following proposition gives a source of examples of I-semirings.

Proposition 2.3. If J is a Q-strong co-ideal of a semiring R, then R/J is an

I-semiring.
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Proof. Let qe be the unique element in Q such that qeJ = J is the identity
in R/J . We need to show that qeJ ⊕ qJ = qeJ for each q ∈ Q. Since J is a
co-ideal of R, qeJ + qJ ⊆ qeJ . Let qeJ ⊕ qJ = q′J , where qeJ + qJ ⊆ q′J for
some q′ ∈ Q. Hence q′J ∩ qeJ 6= ∅. This shows that qeJ ⊕ qJ = qeJ . �

Definition 2.4. An element x of a semiring R is called co-nilpotent if nx = 1
for some positive integer n. A semiring R is said to be co-reduced semiring if
1 is the only co-nilpotent element of R.

We will frequently need the following proposition.

Proposition 2.5. Let R be a commutative I-semiring. Then the following

statements hold:
(1) R is co-reduced;
(2) If J is co-ideal, then J is a strong co-ideal of R. Moreover, if xy ∈ J ,

then x, y ∈ J for every x, y ∈ R. In particular, J is subtractive;
(3) The set (1 : x) = {r ∈ R : r + x = 1} is a strong co-ideal of R for every

x ∈ S(R).

Proof. (1) Let x ∈ R. We may assume that x 6= 1. By assumption, 1 + x = 1.
If nx = x + x + · · · + x = 1, then x(1 + 1 + · · · + 1) = x = 1 which is a
contradiction.

(2) We may assume that J 6= {1}. So there exists 1 6= x ∈ J . Since J is
co-ideal, 1 = 1 + x ∈ J . Thus J is a strong co-ideal of R. Now let xy ∈ J
(x, y ∈ R). Then x + xy ∈ J ; so x = x(1 + y) ∈ J . Similarly, y ∈ J . The “in
particular” statement is clear.

(3) Clearly, 1 ∈ (1 : x). If a, b ∈ (1 : x), then a + x = 1 and b + x = 1,
implying ab + ax + bx + x2 = 1. Since (ab + x)(1 + x)(1 + a)(1 + b) = 1 and
1 + x = 1 + a = 1 + b = 1, ab + x = 1. Thus ab ∈ (1 : x). Let r ∈ R and
a ∈ (1 : x). Since R is an I-semiring and a + x = 1, a + r + x = 1 + r = 1.
Thus a+ r ∈ (1 : x), as required. �

The following example shows that co-reduced semirings are not necessarily
I-semiring.

Example 2.6. Let R = (Z+,+, ·). It is clear that R is a co-reduced semiring
which is not an I-semiring.

The remainder of this section is concerned to study the minimal prime co-
ideals of I-semirings.

Remark 2.7. Assume that P is a prime co-ideal of a semiring R and let
∑

be
the set of those prime co-ideals of R which are contained in P . Then P ∈

∑

and the set
∑

of prime co-ideals of R (partially ordered by reverse inclusion and
using Zorn’s Lemma) has at least one minimal element, and any such minimal
element of

∑
is a prime co-ideal. Thus P has a minimal prime co-ideal.

Theorem 2.8. Let R be an I-semiring.
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(1) If {Pα}α∈Λ is the set of all prime co-ideals of R, then ∩α∈ΛPα = {1}.
(2) If P1, . . . , Pn are the only distinct minimal prime co-ideals of R, then

∩n
i=1Pi = {1} and {1} 6= ∩1≤i≤n,i6=jPi for each 1 ≤ j ≤ n.

Proof. (1) By Proposition 2.5, it is clear that {1} ⊆ ∩α∈ΛPα. For the re-
verse inclusion, let x ∈ ∩α∈ΛPα. Assume that x 6= 1. Set

∑
= {I : x /∈

I, I is a co-ideal of R}. Since {1} ∈
∑

,
∑

6= ∅. Of course, the relation of
inclusion, ⊆, is a partial order on

∑
, and then the partially ordered set (

∑
,⊆)

has a maximal element by Zorn,s Lemma, say K. Since x /∈ K, K 6= R. We
claim that K is prime. Let a+ b ∈ K such that a /∈ K and b /∈ K. Since K is
properly contained in F (K∪{a}) and F (K∪{b}), x ∈ F (K∪{a})∩F (K∪{b}).
Hence x = r1+k1a

n = r2+k2b
m for some r1, r2 ∈ R, k1, k2 ∈ K and n,m ∈ N.

Since k1(a+ b)n = k1a
n + bt ∈ K for some t ∈ R, x+ bt = r1 + k1a

n + bt ∈ K.
Thus (x + b)(1 + t) = x + bt+ xt+ b ∈ K. By Proposition 2.5, we must have
x+ b ∈ K. Thus (b+ x)2 ∈ K. Hence b2 + x = (b2 + x)(1 + b)(1 + x)(1 + b) =
(b+x)2+c ∈ K, where c ∈ R. Inductively bi+x ∈ K for each i ∈ N. In particu-
lar bm+x ∈ K. As k2 ∈ K, k2+x ∈ K. Hence (k2+x)(bm+x) ∈ K. Therefore
k2b

m + x = (k2b
m + x)(k2 + 1)(x + 1)(bm + 1) = (k2 + x)(bm + x) + d ∈ K,

where d ∈ R. So x + r2 + k2b
m ∈ K; thus x = x + x ∈ K, a contradiction.

Therefore K is prime, and so x ∈ K that is a contradiction. Hence x = 1, as
needed.

(2) Clearly ∩α∈ΛPα = {1} ⊆ ∩n
i=1Pi. Let x ∈ ∩n

i=1Pi. If x 6∈ ∩α∈ΛPα,
then there exists α ∈ Λ such that x 6∈ Pα. Obviously, Pα is not minimal
(because x /∈ Pα). By Remark 2.7, Pα contains a minimal prime co-ideal P ′

of R. Since P ′ is minimal, P ′ = Pi for some 1 ≤ i ≤ n. Thus x ∈ P ′ ⊆ Pα

a contradiction. Therefore x ∈ ∩α∈ΛPα. Hence ∩α∈ΛPα = {1} = ∩n
i=1Pi.

Now let {1} = ∩1≤i≤n,i6=jPi for some 1 ≤ j ≤ n, so ∩1≤i≤n,i6=jPi ⊆ Pj .
Since for each i 6= j, Pi 6⊆ Pj , there is a xi ∈ Pi such that xi /∈ Pj . As∑

i6=j xi ∈ ∩1≤i≤n,i6=jPi ⊆ Pj , it is easy to see that xi ∈ Pj for some i 6= j,
which is a contradiction. Therefore Pi ⊆ Pj for some 1 ≤ i ≤ n. Thus we have
a contradiction to the minimality of Pj , and hence {1} 6= ∩1≤i≤n,i6=jPi for each
1 ≤ j ≤ n. �

3. Examples and basic structure of Γ(R)

We start this section with the following proposition.

Proposition 3.1. Let R be a semiring. Then Γ(R) = ∅ if and only if R is a

co-semidomain.

Proof. This follows directly from the definitions. �

Here we consider the following question: If R is a semiring, is Γ(R) con-
nected? The following is an example of a semiring R where Γ(R) is not con-
nected.
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Example 3.2. Assume that Z+ is the set of all nonnegative integers and let
R = Z

+ × Z
+ × Z

+. Then (R,+, ·) with the usual operations is a semiring
and S∗(R) = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0)}. An inspec-
tion will show that Γ(R) is not connected.

It is important for us to be able to recognize when the identity-summand
graph of semirings are connected. The concept of “R is an I-semiring” helps us
to do this. The next theorem gives a more explicit description of the diameter
of this graph.

Theorem 3.3. Let R be an I-semiring. Then the following statements hold:
(1) Γ(R) is a connected graph with diam(Γ(R)) ≤ 3;
(2) Γ(R) contains no loop;
(3) If |S∗(R)| ≥ 3, then Γ(R) is not a complete graph;
(4) If |S∗(R)| ≥ 3, then diam(Γ(R)) = 2 or 3.

Proof. (1) Let x, y ∈ S∗(R) be distinct. If x + y = 1, then d(x, y) = 1. So
suppose that x + y 6= 1. By Proposition 2.5, x + x 6= 1 and y + y 6= 1. Since
x, y ∈ S∗(R), x+ a = 1 and y + b = 1 for some a, b ∈ S∗(R) \ {x, y}. If a = b,
then x− a− y is a path of length 2 in Γ(R). Thus we may assume that a 6= b.
If a+ b = 1, then x− a− b− y is a path of length 3, and hence d(x, y) ≤ 3. If
a+ b 6= 1, then a+ b 6= x (otherwise, x + x = x + a+ b = 1, a contradiction).
Similarly, a + b 6= y. Therefore, x − a + b − y is a path of length 2. Hence
diam(Γ(R)) ≤ 3.

(2) Follows from Proposition 2.5.
(3) Let Γ(R) be complete, and let a, b and c be distinct elements of S∗(R).

Since Γ(R) is complete, a+ b = 1 and a+ c = 1. Thus bc ∈ (1 : a), since (1 : a)
is a strong co-ideal of R by Proposition 2.5. If bc = 1, then c = c(1 + b) =
c + bc = 1, a contradiction. So assume bc 6= 1. Hence bc ∈ S∗(R). If bc = c,
then 1 = b+ c = bc+ b = b(c+ 1) = b that is a contradiction. So bc 6= c. Since
Γ(R) is complete, bc+ c = 1; hence c = 1 which is a contradiction. Therefore
Γ(R) is not complete.

(4) Follows from (1), (2) and (3). �

The following is an example of a semiring R where Γ(R) is connected but R
is not an I-semiring.

Example 3.4. Consider the semiring R = (Z+ × Z
+,+, ·). Then S∗(R) =

{(1, 0), (0, 1)} gives Γ(R) is connected but R is not an I-semiring.

A cycle of a graph is a path such that the start and end vertices are the
same. For a graph G, it is well-known that if G contains a cycle, then g(G) ≤
2 diam(G) + 1.

Theorem 3.5. Let R be an I-semiring. If Γ(R) contains a cycle, then

g(Γ(R)) ≤ 4.
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Proof. Suppose that Γ(R) contains a cycle. We may assume that g(Γ(R)) ≤ 7.
Suppose that g(Γ(R)) = n, where n ∈ {5, 6, 7} and let x1 − x2 − · · · − xn − x1

be a cycle of minimum length. Since x1 is not adjacent to x3, x1 +x3 6= 1. Let
x1 + x3 6= xi for 1 ≤ i ≤ n. Then x2 − x3 − x4 − x1 + x3 − x2 is a 4-cycle, a
contradiction. Therefore x1 + x3 = xi for some 1 ≤ i ≤ n. We divide the proof
into five cases.

Case 1: If x1 + x3 = x1, then x1 − x2 − x3 − x4 − x1 is a 4-cycle, a
contradiction.

Case 2: If x1+x3 = x2, then x2−x3−x4−x2 is a 3-cycle, a contradiction.
Case 3: If x1 + x3 = x3, then x1 − x2 − x3 − xn − x1 is a 4-cycle, a

contradiction.
Case 4: If x1+x3 = x4, then x2−x3−x4−x2 is a 3-cycle, a contradiction.
Case 5: If x1 + x3 = xn, then x2 − x3 − x4 − xn − x2 is a 4-cycle, a

contradiction.
Therefore, there must be a shorter cycle in Γ(R), and g(Γ(R)) ≤ 4. �

A cycle graph is a graph that consists of a single cycle. Our next result
characterizes the identity-summand graphs that are a cycle graph.

Theorem 3.6. The only cycle identity-summand graph of a commutative I-
semiring is K2,2.

Proof. By Theorem 3.3, there is no 3-cycle graph and there are no cycle graphs
with five or more vertices by Theorem 3.5. Thus the only cycle graph is K2,2.

�

A vertex x of a connected graph G is a cut-point of G if there are vertices
a and b of G such that x is in every path from a to b (and x 6= a, x 6= b).
Equivalently, for a connected graph G, x is a cut-point of G if G− {x} is not
connected. The following example shows that there exist I-semirings R1 and
R2 such that Γ(R1) has cut-points and Γ(R2) is a star graph.

Example 3.7. (1) Let R1 = {0, 1, 2, 3, 5, 6, 10, 15, 30}. Then (R1, gcd, lcm)
(take gcd(0, 0) = 0 and lcm(0, 0) = 0) is an I-semiring and S∗(R1) = {2, 3, 5, 6,
10, 15}. In Γ(R1), an inspection will show that 2, 3 and 5 are cut-points.

(2) Let R2 = {0, 1, 2, 5, 10, 25, 50}. Then (R2, gcd, lcm) (take gcd(0, 0) = 0
and lcm(0, 0) = 0 ) is an I-semiring. It can be seen than Γ(R2) is a star graph.

4. Bipartite graphs

In this section, we want to determine when the identity-summand graph
Γ(R) is a complete bipartite graph. Now we start with the following definition.

Definition 4.1. Let P be a prime co-ideal of an I-semiring R. We say that
P is an associated prime co-ideal of R precisely when there exists x ∈ R with
(1 : x) = P .

The set of associated prime co-ideals of R is denoted by co-Ass(R).
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Example 4.2. Let X = {a, b, c} and R = (P (X),∪,∩) a semiring with 1R =
X , where P (X) = the set of all subsets of X . Then S∗(R) = {{a}, {b}, {c},
{a, b}, {a, c}, {b, c}} and an inspection will show that

P1 = (1 : {a, b}) = {{c}, {b, c}, {a, c}, X},

P2 = (1 : {a, c}) = {{b}, {a, b}, {c, b}, X},

P3 = (1 : {b, c}) = {{a}, {a, c}, {a, b}, X}

are prime strong co-ideals of R and co-Ass(R) = {P1, P2, P3}.

We are now in a position to show a finer relationship between vertices which
are adjacent to all the other vertex and co-Ass of a semiring.

Theorem 4.3. Let R be an I-semiring, and let a ∈ S∗(R) be a vertex of Γ(R)
which is adjacent to every other vertex in Γ(R). Then (1 : a) is a maximal

element in ∆ = {(1 : x) : x ∈ S∗(R)} and (1 : a) ∈ co-Ass(R).

Proof. Suppose (1 : a) is not maximal in ∆. So there is a vertex x in Γ(R)
such that (1 : a) ⊂ (1 : x). Since a is adjacent to every other vertex in Γ(R),
x ∈ (1 : a). Since (1 : a) ⊂ (1 : x), x = x + x = 1 which is a contradiction. It
remains to show that (1 : a) is a prime strong co-ideal of R. Let x+ y ∈ (1 : a)
such that x, y /∈ (1 : a). Thus x+y+a = 1 and y+a 6= 1. So x, y + a ∈ S∗(R).
Since a is adjacent to every other vertex in Γ(R), we have a+ x = 1 which is
a contradiction. �

Theorem 4.4. Let R be an I-semiring.

(1) If Γ(R) is a complete r-partite graph with r ≥ 3, then at most one part

has more than one vertex.

(2) If Γ(R) is a complete r-partite graph, then Γ(R) is a complete bipartite

graph.

Proof. (1) Let V1, V2, . . . , Vr be parts of Γ(R). Without loss of generality, let
V1, V2 have more than one vertex. Let a ∈ V1 and b ∈ V2. Since r ≥ 3, there
exists a part, say V3, such that V3 6= V1 and V3 6= V2. Let z ∈ V3. Since Γ(R) is
complete r-partite, (1 : z) ⊆ (1 : a)∪ (1 : b). Now we show that (1 : z) ⊆ (1 : a)
or (1 : z) ⊆ (1 : b). Let x ∈ (1 : z) \ (1 : a) and y ∈ (1 : z) \ (1 : b). Since (1 : z)
is a strong co-ideal of R, xy ∈ (1 : z) ⊆ (1 : a) ∪ (1 : b). If xy ∈ (1 : a), then
x, y ∈ (1 : a), by Proposition 2.5 which is contradiction. If xy ∈ (1 : b), then
x, y ∈ (1 : b), by Proposition 2.5, another contradiction. Thus we may assume
that (1 : z) ⊆ (1 : a). Since |V1| ≥ 2, there exists c ∈ V1 with a 6= c. Thus
c ∈ (1 : z) \ (1 : a) that is a contradiction.

(2) Let V1, V2, . . . , Vr be parts of Γ(R) and r ≥ 3. By (1), at most one parts
of Γ(R) has more than one vertex. Let |V1| > 1, and |Vi| = 1 for 2 ≤ i ≤ r.
Let a, b ∈ V1 and ci ∈ Vi. Since Γ(R) is a complete r-partite graph, a+ c3 = 1
and c3 + c2 = 1. Since a, c2 ∈ (1 : c3) and (1 : c3) is a strong co-ideal of R,
ac2 ∈ (1 : c3); so ac2 + c3 = 1. If ac2 = 1 then a = ac2 + a = 1 + a = 1,
a contradiction. Thus ac2 ∈ S∗(R). Since ac2 + a = a 6= 1, ac2, a are not
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adjacent. This implies ac2 ∈ V1. Since Γ(R) is a complete r-partite graph,
ac2 ∈ V1 and c2 ∈ V2, ac2 + c2 = 1, where ac2 + c2 = c2(a+1) = c2, which is a
contradiction. �

Theorem 4.5. Let R be an I-semiring. Then Γ(R) is complete bipartite if

and only if there exist two distinct prime co-ideals P1 and P2 of R such that

P1 ∩ P2 = {1}.

Proof. Let P1, P2 be two prime co-ideals of R such that P1 ∩ P2 = {1}. Since
P1+P2 ⊆ P1∩P2, P1+P2 = {1}. It follows that P1 = (1 : a) and P2 = (1 : b) for
each 1 6= a ∈ P2, 1 6= b ∈ P1. Thus P1, P2 ∈ co-Ass(R); hence P1 ∪ P2 ⊆ S(R).
Now we show that S(R) ⊆ P1∪P2. If 1 6= a ∈ S(R)\P1 ∪ P2, then there exists
1 6= b ∈ R such that a+ b = 1 ∈ P1 ∩ P2. Since P1, P2 are prime co-ideals of R
and a /∈ P1∪P2, b ∈ P1∩P2 = {1}, a contradiction. Therefore S(R) = P1∪P2.
Set V1 = P1 \ {1} and V2 = P2 \ {1}. Let a, b ∈ V1. If a + b = 1 ∈ P2, then
a ∈ P2 or b ∈ P2, which is a contradiction. Thus non of elements of V1 are
adjacent together. Similarly, non of elements of V2 are adjacent. This means
that Γ(R) is a bipartite graph with parts V1 and V2.

Conversely, let Γ(R) be a partite graph with two parts V1 and V2. First
of all, we show that V1 ∪ {1} is a co-ideal of R. Let a, b ∈ V1 ∪ {1}. Then
a + c = 1 and b + c = 1 for each c ∈ V2 ∪ {1}. Since (1 : c) is a co-ideal of R
by Proposition 2.5 and a, b ∈ (1 : c), ab ∈ (1 : c). So ab+ c = 1. Now let r ∈ R
and a ∈ V1 ∪ {1}. Let a + r 6= 1. Since Γ(R) is a complete bipartite graph,
a+ c = 1 for each c ∈ V2∪{1}. Thus a+ r+ c = 1, this means a+ r ∈ V1 ∪{1}.
Now we show that P1 = V1 ∪ {1} is a prime co-ideal of R. Let a+ b ∈ P1 such
that a /∈ P1 and b /∈ P1. Hence a+(b+ c) = 1, a+ c 6= 1 and b+ c 6= 1 for each
c ∈ V2. Since a /∈ P1, so a 6= 1 and a ∈ V2. Thus b + c ∈ V1. Since Γ(R) is a
complete bipartite graph, b+ c = b+ c+ c = 1 (because R is an I-semiring and
c + c = c). Since c ∈ V2, b ∈ V1, a contradiction. Thus P1 is a prime strong
co-ideal of R. Similarly, P2 is a prime strong co-ideal of R. �

Theorem 4.6. Let R be an I-semiring.

(1) If P1 = (1 : x1) and P2 = (1 : x2) are two distinct elements of co-Ass(R),
then we have x1 + x2 = 1.

(2) If co-Ass(R) = {P1, P2}, |Pi| ≥ 3 (i = 1, 2) and P1 ∩ P2 = {1}, then
g(Γ(R)) = 4.

(3) If |co-Ass(R)| ≥ 3, then g(Γ(R)) = 3.

Proof. (1) By assumption, we may assume that P2 6⊆ P1. Then there exists
1 6= a ∈ P2 \ P1 such that a+ x2 = 1; so x2 ∈ P1 since P2 is a prime co-ideal
of R. Thus x1 + x2 = 1.

(2) By Theorem 4.5, Γ(R) is a complete bipartite graph with parts P1 \ {1}
and P2 \ {1}. Since for each i, |Pi| ≥ 3, we must have g(Γ(R)) = 4.

(3) If P1 = (1 : x1), P2 = (1 : x2) and P3 = (1 : x3) are three distinct
elements of co-Ass(R), then x1 − x2 − x3 − x1 is a cycle of length 3 in Γ(R) by
(1), as required. �
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For a graph G and vertex x ∈ V (G), the degree of x, denoted deg(x), is
the number of edges of G incident with x. For every nonnegative integer r,
the graph G is called r-regular if the degree of each vertex of G is equal to
r. Also for a given vertex x ∈ V (G), the neighborhood set of x is the set
N(x) = {a ∈ V (G) : a is adjacent to x}. We need the following lemma proved
in [21, Lemma 1.9].

Lemma 4.7. Let G be a finite, simple graph with the property that two distinct

vertices v and w of G are non-adjacent if and only if N(v) = N(w). Then G
is a complete r-partite graph for some positive integer r.

Theorem 4.8. Let R be an I-semiring, and let Γ(R) be a finite regular graph.

Then Γ(R) is Kn,n for some n ∈ N.

Proof. Let Γ(R) be a regular graph of degree n. If Γ(R) contains only two
vertices, then Γ(R) = K1,1. So let Γ(R) contains at least 3 vertices. Let a, b ∈
S∗(R) be non-adjacent in Γ(R). Since N(b) ⊆ N(a+b) and deg(b) = deg(a+b),
we have N(b) = N(a + b). By similar argument as before, N(a) = N(a + b);
hence N(a) = N(b). Therefore, any two non adjacent vertices on the graph
have the same neighborhood, and clearly, the converse is true. So by Lemma
4.7, Γ(R) is complete r-partite and hence Γ(R) is bipartite by Theorem 4.4(2).
Since Γ(R) is regular, Γ(R) = Kn,n. �

Anderson and Mulay [9, Theorem 2.8] proved that for direct product of
integral domains and their subrings, the diameter is at most 2. We generalize
this result to identity-summand graph of semirings.

Theorem 4.9. Assume that R1 and R2 are I-co-semidomains and let R ⊆
R1 ×R2 be an I-semiring with |S∗(R)| ≥ 3. Then Γ(R) is a complete bipartite

graph with diam(Γ(R)) = 2.

Proof. Let (r1, r2) ∈ S∗(R). Then (r1, r2) + (s1, s2) = (1, 1) for some non-
identity element (s1, s2) of R. By assumption, either r1 = 1 or s1 = 1 and either
r2 = 1 or s2 = 1; hence either r1 = 1 or r2 = 1. Set V1 = {(1, a) : 1 6= a ∈ R2}
and V2 = {(b, 1) : 1 6= b ∈ R1}. We show that any two elements of V1 are
non-adjacent. Suppose, on the contrary, that x = (1, a1), y = (1, a2) ∈ V1 are
adjacent in Γ(R). So x+ y = (1, a1) + (1, a2) = (1, 1); hence a1 + a2 = 1 which
implies a1 = 1 or a2 = 1 (because R2 is I-co-semidomain), a contradiction. By
the similar way, non of elements of V2 are adjacent in Γ(R). Also for every
x = (1, a) ∈ V1 and y = (b, 1) ∈ V2, x + y = (1, a) + (b, 1) = (1, 1) which
means every element in V1 is adjacent to every element in V2. Hence Γ(R) is a
complete bipartite graph and diam(Γ(R)) = 2. �

5. Chromatic number and clique number of Γ(R)

In this section, we will investigate chromatic number and clique number of
the graph Γ(R).
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Lemma 5.1. Let R be an I-semiring with w(Γ(R)) finite. Then R has a.c.c

on co-ideals of the form (1 : x), where x ∈ R.

Proof. Let (1 : a1) ⊆ (1 : a2) ⊆ · · · be an ascending chain of co-ideals of
R. Let xi ∈ (1 : ai) \ (1 : ai−1), where i ≥ 2; so xi + ai−1 6= 1. Since
xi+ai−1+xj +aj−1 = 1 for each i 6= j, the set {xi+ai−1}i≥2 is a clique. Also,
for each i 6= j, xi + ai−1 6= xj + aj−1 (if not, by Proposition 2.5, xi + ai−1 =
xi+ai−1+xi+ai−1 = xi+ai−1+xj+aj−1 = 1, a contradiction); thus w(Γ(R))
is not finite, which is a contradiction. �

Theorem 5.2. Let R be an I-semiring. Then the following are equivalent.

(1) χ(Γ(R)) is finite;
(2) w(Γ(R)) is finite;
(3) The co-ideal {1} is a finite intersection of prime co-ideals.

Proof. (1) ⇒ (2) Clearly w(G) ≤ χ(G) for any graph G, so the result is trivial.
(2) ⇒ (3) Let w(Γ(R)) = n. By Lemma 5.1, the partially ordered set (∆,⊆)

has a maximal element, where ∆ = {(1 : a) : a 6= 1, a ∈ R}. Let (1 : xi)(i ∈ J)
be the different maximal members of the set ∆. By a usual argument, for each
i ∈ J , (1 : xi) is prime. Therefore {xi}i∈J is a clique in Γ(R) by Theorem 4.6(1).
Since w(Γ(R)) is finite, J is a finite set; we show that {1} = ∩i∈J (1 : xi). Let
1 6= x ∈ R. Then (1 : x) ⊆ (1 : xi) for some i ∈ I. We claim that x /∈ (1 : xi).
Otherwise, x + xi = 1, so xi ∈ (1 : x) ⊆ (1 : xi); hence 1 = xi + xi = xi

which is a contradiction. Therefore x /∈ (1 : xi), and so x /∈ ∩i∈I(1 : xi). Hence
∩i∈I(1 : xi) ⊆ {1}, and so we have equality.

(3) ⇒ (1) Let ∩n
i=1Pi = {1}, where for each 1 ≤ i ≤ n, Pi is a prime co-ideal

of R. If x is adjacent to y in Γ(R), then there is no 1 ≤ i ≤ n such that x /∈ Pi

and y /∈ Pi. Therefore we can label any vertex x of Γ(R) by min{i : x /∈ Pi}.
This implies that χ(Γ(R)) ≤ n. �

Theorem 5.3. Let R be an I-semiring with w(Γ(R)) finite. Then min(R) ⊆
co-Ass(R), where min(R) is the set of minimal prime co-ideals of R.

Proof. Let P ∈ min(R). By an argument like that in Theorem 5.2, {1} =
∩n
i=1Qi where Qi ∈ co-Ass(R). Hence ∩n

i=1Qi ⊆ P . By an argument similar to
the proof in Theorem 2.8(2), Qj ⊆ P for some 1 ≤ j ≤ n. As P is minimal,
Qj = P . Thus P ∈ co-Ass(R) and so min(R) ⊆ co-Ass(R). �

Theorem 5.4. Let R be an I-semiring. Then w(Γ(R)) = |min(R)|.

Proof. First we show that |min(R)| is finite if and only if w(Γ(R)) is finite.
Let |min(R)| be finite. Then {1} is a finite intersection of prime co-ideals by
Theorem 2.8; so by Theorem 5.2, w(Γ(R)) is finite. Now suppose that w(Γ(R))
is finite. Hence {1} = ∩n

i=1Pi for some prime co-ideals Pi of R by Theorem
5.2. Let {Qα}α∈Λ be the set of all minimal prime co-ideals of R. For each
α ∈ Λ, 1 ∈ Qα, so ∩n

i=1Pi ⊆ Qα for each α ∈ Λ. This implies that Pi ⊆ Qα for
some 1 ≤ i ≤ n. Since Qα is minimal, Pi = Qα. This gives Λ is finite, and so
|min(R)| is finite.
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Let |min(R)| = n. By Theorem 2.8, for each 1 ≤ j ≤ n there exists xj ∈
∩1≤i≤n,i6=jPi with xj /∈ Pj . Since each Pi is a co-ideal of R, xi+xj ∈ Ps for each
1 ≤ s ≤ n, and so xi + xj = 1 (because {1} = ∩n

i=1Pi) for each 1 ≤ i 6= j ≤ n;
thus X = {x1, x2, . . . , xn} is a clique in Γ(R). Hence w(Γ(R) ≥ n. Now we
show that w(Γ(R)) ≤ n. Let w(Γ(R)) = m. Then there is {y1, . . . , ym} such
that it is a clique in Γ(R). Since yi 6= 1 and {1} = ∩1≤i≤nPi, there is 1 ≤ s ≤ n
such that yi /∈ Ps. If m > n, then by Pigeon hole principle, there is at least one
Ps (1 ≤ s ≤ n) such that yi /∈ Ps and yj /∈ Ps for some (1 ≤ i 6= j ≤ m). Since
Ps is prime, yi + yj /∈ Ps which is a contradiction (because yi + yj = 1 ∈ Ps).
Hence m ≤ n. Thus w(Γ(R)) = n. �

Example 5.5. Let R,P1, P2 and P3 be as in Example 4.2. It is easy to see
that P1 ∩ P2 ∩ P3 = X = {1}, X 6= ∩1≤i≤3,i6=jPi and w(Γ(R)) = 3.

Theorem 5.6. If R is an I-semiring, then χ(Γ(R)) = w(Γ(R)).

Proof. It is clear that w(Γ(R)) ≤ χ(Γ(R)). Let w(Γ(R)) = n. Then {1} =
P1∩· · ·∩Pn, where for each i, Pi is a minimal prime co-ideal. By an argument
like that in the proof of Theorem 5.2 ((3) ⇒ (1)), χ(Γ(R)) ≤ n. Therefore
χ(Γ(R)) = w(Γ(R)). �

6. Planar property of Γ(R)

A graph is said to be planar if it can be drawn in the plane so that its edges
intersect only at their ends. A subdivision of a graph is a graph obtained from
it by replacing edges with pairwise internally-disjoint paths. In this section,
the planar property of graph Γ(R) is investigated.

Theorem 6.1. Let R be an I-semiring.

(1) If |min(R)| ≥ 5, then Γ(R) is not planar.

(2) If |min(R)| = 4, then Γ(R) is not planar.

Proof. (1) This follows from Theorem 5.4.
(2) By Theorem 5.4, w(Γ(R)) = 4. Thus there exist x1, x2, x3, x4 ∈ S(R)∗

such that {x1, x2, x3, x4} forms a clique in Γ(R). Let xij = xixj , where 1 ≤
i 6= j ≤ 4. Assume that 1 ≤ k 6= i, j ≤ 4. Since xi, xj ∈ (1 : xk), xij ∈ (1 : xk).
If xij = 1, then xi = xij + xi = 1 which is a contradiction. This implies that
xij ∈ S∗(R). If xij = xs for some 1 ≤ s ≤ 4, then we split the proof into two
cases:

Case 1. If s = i, then xij + xj = 1. This implies that xj = 1 which is a
contradiction. Similarly, for s = j.

Case 2. If s 6= j and s 6= i, then xij + xs = 1; hence xs + xs = 1. It follows
that xs = 1 by Proposition 2.5, a contradiction.

Therefore xij /∈ {x1, x2, x3, x4}. Let s 6= k and s, k ∈ {1, 2, 3, 4} − {i, j}.
Since xij + xs = 1 and xij + xk = 1, we have xs, xk ∈ (1 : xij); thus xsk ∈ (1 :
xij). Set V1 = {x1, x2, x12} and V2 = {x34, x3, x4}. Then V1 and V2 are two
parts of a complete bipartite subgraph of Γ(R). Therefore K3,3 is a subgraph
of Γ(R), and so Γ(R) is not planar. �
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Example 6.2. Let R = {2i3j5k : i ∈ {0, 1, 2, 3}, j ∈ {0, 1, 2, 3}, k ∈ {0, 1}}∪
{0}. Then (R, gcd, lcm) is an I-semiring. An inspection shows that {2, 3, 5} is
a clique in Γ(R) and w(Γ(R)) = 3. Hence |min(R)| = 3 by Theorem 5.4. Set
V1 = {2, 22, 23} and V2 = {3, 32, 33}. Then K3,3 is a subgraph of Γ(R) with
two parts V1 and V2. Hence Γ(R) is not planar.

Remark 6.3. Let R be an I-semiring. Then:
(1) If |min(R)| = 1, then by Theorem 2.8(2), {1} is the only minimal prime

co-ideal of R. Hence R is co-semidomain and so Γ(R) = ∅ by Proposition 3.1.
(2) If |min(R)| = 2, then by Theorem 4.5, Γ(R) is Kn,m for some integer

n,m, where |P1|−1 = n and |P2|−1 = m. If n,m ≥ 3, then Γ(R) is not planar.
(3) If |min(R)| ≥ 4, then by Theorem 6.1, Γ(R) is not planar
(4) If R is the I-semiring as in Example 4.1, then |min(R)| = 3 and R is

planar. However there exist I-semirings that have only three minimal prime
co-ideals and their identity-summand graphs are not planar as Example 4.2
shows. It is not entirely clear for us which semirings with |min(R)| = 3, the
Γ(R) is planar.
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