ON NUMBER OF WAYS TO SHELL THE k-DIMENSIONAL TREES

GAB-BYUNG CHAE, MINSEOK CHEONG, AND SANG-MOK KIM

ABSTRACT. Which spheres are shellable?[2]. We present one of them which is the k-tree with n-labeled vertices. We found that the number of ways to shell the k-dimensional trees on n-labeled vertices is

$$\frac{n!}{(k+1)!}(nk-k^2-k+1)!_k.$$

1. Introduction

A tree is a connected graph that has no cycles. A tree also can be defined as a single vertex is a tree, and a tree with n+1 vertices is any graph obtained by joining a new vertex to any one vertex in a tree with n vertices. A k-dimensional tree(k-tree for short) can be defined analogously starting with a complete graph of order k, a k-tree with n+1 vertices is obtained by joining a new vertex to any k vertices already joined in a k-tree with n vertices. Harary [3] defined a pure n-complex as a finite n-dimensional simplicial complex in which every ksimplex with k < n is contained in an n-simplex. A 2-tree is a simply connected, acyclic 2-complex [4, 5]. Also a k-tree can be considered as a pure k-complex. An r-cell(called a simplex) of a k-tree is a complete subgraph of r+1 vertices. Thus, 0-cells, 1-cells, and 2-cells are vertices, edges, and K_3 (which is called a 2-dimensional edge including inside). A (k-1)-cell is a k-tree, and a k-tree with n+1 vertices is obtained when a k-cell is added to a k-tree with n vertices and has precisely a (k-1)-cell in common with it. A pure(no isolated vertices) finite simplicial complex is said to be shellable if its maximal cells can be ordered F_1 , F_2, \ldots, F_n in such a way that $F_k \cap (\bigcup_{i=1}^{k-1} F_i)$ is a nonempty union of maximal proper cell of F_k for $k=2,3,\ldots,n$. Counting the number of such orderings of maximal cells is called the number of ways to shell a pure finite simplicial complex. Note that, by the construction of k-trees, it is clearly shellable. Note that Beineke and Pippert [1] found the number of k-trees with n vertices which

Received May 9, 2006; Revised October 18, 2006.

²⁰⁰⁰ Mathematics Subject Classification. 05A16, 05A20.

Key words and phrases. k-trees, recursive k-trees, shell.

The present Research has been conducted by the Research Grant of Kwangwoon University in 2007.

is

$$\binom{n}{k} \{k(n-k)+1\}^{n-k-2}$$

which reduces to Cayley's formula n^{n-2} when k=1. In this paper we deal with the number of ways to shell the k-trees with n-labeled vertices. It turns out to be

$$\frac{n!}{(k+1)!}(nk-k^2-k+1)!_k.$$

In case of k = 1, this sequence has the absolute catalogue number A010796 of J. A. Sloane [6].

2. Recursive k-trees

A tree T_n rooted on the vertex labeled 1 with n vertices labeled $1, 2, \ldots, n$ is a recursive tree if n = 1 or if $n \ge 2$ and T_n is obtained by joining the n^{th} vertex to one vertex of some recursive tree T_{n-1} . There are (n-1)! recursive trees T_n and a tree with n labeled vertices is recursive if and only if the labels of the vertices in the path from the 1st vertex to the k^{th} vertex of the tree form an increasing subsequence of $\{1, 2, \ldots, k\}$ for $k = 1, 2, \ldots, n$. A recursive k-tree T_n^k can be analogously defined as follows.

2-trees with n=4

Recursive 2-trees with n=4

FIGURE 1. k-trees and recursive k-trees with n = 4.

Definition 1. A recursive k-tree T_n^k rooted on the complete graph of order k with n labeled vertices is a recursive k-tree if n = k or if $n \ge k + 1$ and T_n^k is obtained by joining the n^{th} vertex to each of k vertices on a (k-1)-cell of some recursive tree T_{n-1}^k with labeling in this order.

Figure 1 shows that 2-trees and recursive 2-trees with n=4. The number of recursive k-trees T_n^k with n vertices will be computed in the Lemma 2. If n is a non-negative integer, then define its k^{th} factorial as

$$n!_k := n(n-k)(n-2k)\cdots$$

where $n!_k = 0$ when n < k and (n - ik) = 1 if $(n - ik) \le 1$ for some i when $n \ge k$. The following lemma is stated in [1].

Lemma 1. The number of r-cells in a k-tree with n-vertices is

$$\binom{k}{r+1} + (n-k) \binom{k}{r}$$

Proof. Note that $0 \le r \le k$, and r-cell is complete graph of order r+1. Since a recursive k-tree starting with a complete graph of order k, there are $\binom{k}{r+1}$ r-cells in the K_k , from which the k-tree started. When we add each vertex to a k-tree, this new vertex is joined to any k vertices already joined in a k-tree. Hence we can have new $\binom{k}{r}$ r-cells for each (n-k) vertices.

By the previous Lemma, the number of (k-1)-cells in a k-tree with n vertices is

$$1 + (n-k)\binom{k}{k-1} = nk - k^2 + 1$$

that will be useful in the next Lemma.

Lemma 2. The number of recursive k-trees T_n^k with n vertices is

$$((n-1)k - k^2 + 1)!_k = (nk - k^2 - k + 1)!_k.$$

Proof. Let us prove inductively on the number of vertices. When n = 1, then k = 1 so the number of recursive trees is 0! = 1. Let us assume that there are $((n-2)k - k^2 + 1)!_k$ number of recursive k-trees with n-1 vertices. Then by Lemma 1, the number of (k-1)-cells(a complete subgraph of order k) in the k-tree with (n-1) vertices is

$$(n-1)k - k^2 + 1.$$

This means there are $(n-1)k - k^2 + 1$ ways of selecting (k-1)-cells, when we add n^{th} vertex to the recursive k-tree. That is, for each recursive k-tree T_{n-1}^k , we produce $(n-1)k - k^2 + 1$ number of recursive k-tree T_n^k . Hence, by the definition of k^{th} factorial, the number of recursive k-tree with n vertices is

$$\{((n-2)k - k^2 + 1)!_k\} \cdot \{(n-1)k - k^2 + 1\}$$

= $((n-1)k - k^2 + 1)!_k$.

3. Main Theorem

Now before stating our main result of this paper we need the *generalized* ordering recursive k-tree. For a usual recursive k-tree, we fixed the order of positive integer $[n] := \{1, 2, \ldots, n\}$ for the labeling. Now let's consider the all possible ordering of [n]. Obviously there are n! ways to order the set [n]. Since generalized ordering recursive k-trees are rooted on the (k-1)-cell, it produces exactly same generalized ordering recursive k-trees with this root. And it gives us k!. Hence the total number of generalized ordering recursive k-tree is

(3.1)
$$\frac{n!}{k!}(nk-k^2-k+1)!_k.$$

Theorem 1. The number of ways to shell k-trees T of order n is 1 when n = k, and

(3.2)
$$\frac{n!}{(k+1)!}(nk-k^2-k+1)!_k,$$

when n > k.

Proof. Let a labeled k-tree of order n be given. We shell this k-tree starting from any k-cell F_1 containing k+1 vertices labeled by $i_1, i_2, \ldots, i_{k+1}$ and choose another k-cell F_2 from the remaining cells of T such that $F_2 \cap F_1$ is (k-1)-cell, and so on. During this shelling we can get a sequence of vertices, say i_1, i_2, \ldots, i_n where i_j $(1 \leq j \leq n)$ are in [n]. Now with this order of vertices if we make generalized ordering recursive k-trees rooted on the k vertices with $i_1, i_2, \ldots, i_{k+1}$ vertices, then there are only $\binom{k+1}{k} = k+1$ ways of selecting this root. Now by joining the $(k+2)^{th}$ vertex to each of k vertices of the same recursive tree, (k+1) generalized ordering recursive k-trees with k+2 vertices are obtained. And the next $(k+3)^{th}$ vertex is added, and so on. We keep this process along the order of i_1, i_2, \ldots, i_n . Then we can make (k+1) generalized ordering recursive k-trees.

On the other hand, consider the labeling the k-cell of generalized ordering recursive k-tree T rooted on the (k-1)-cell with the given order of vertices, say i_1, i_2, \ldots, i_n . Note that T may be rooted on the different (k-1)-cell that contains vertices $i_1, \ldots, \hat{i_j}, \ldots, i_{k+1}$, for all $j=1,\ldots,k+1$, where $\hat{i_j}$ means this vertex is omitted. It produces the same shelling of k-tree with this order of vertices. Hence if we identify the (k+1) generalized ordering recursive k-trees rooted on the (k-1)-cells, we can define isomorphism from the set of all shellings of k-tree to the set of all generalized ordering recursive k-trees with the identification of (k+1) generalized ordering recursive k-trees rooted on each cells of k-cell with vertices labeled by $i_1, i_2, \ldots, i_{k+1}$.

Therefore this isomorphism gives us the formula

$$\frac{n!}{k!}(nk-k^2-k+1)!_k\frac{1}{k+1} = \frac{n!}{(k+1)!}(nk-k^2-k+1)!_k.$$

Acknowledgements. We are grateful to the referees for their comments on the paper.

References

- [1] L. W. Beineke and R. E. Pippert, *The number of labeled k-dimensional trees*, J. Combinatorial Theory 6 (1969), 200–205.
- [2] G. Danaraj and V. Klee, Which spheres are shellable?, Ann. Discrete Math. 2 (1978), 33–52.
- [3] F. Harary, The number of linear, directed, rooted, and connected graphs, Trans. Amer. Math. Soc. 78 (1955), 445–463.
- [4] F. Harary and E. M. Palmer, On acyclic simplicial complexes, Mathematika 15 (1968), 115–122.
- [5] E. M. Palmer, On the number of labeled 2-trees, J. Combinatorial Theory 6 (1969), 206–207.
- [6] N. J. A. Sloane and S. Plouffe, *The encyclopedia of integer sequences*, With a separately available computer disk. Academic Press, Inc., San Diego, CA, 1995.

Gab-Byung Chae Department of Mathematics Yonsei University Wonju 220-710, Korea

E-mail address: rivendell@yonsei.ac.kr

MINSEOK CHEONG
DEPARTMENT OF MATHEMATICS
SOGANG UNIVERSITY
SEOUL 121-742, KOREA
E-mail address: macross@math.sogang.ac.kr

SANG-MOK KIM
DIVISION OF GENERAL EDUCATION - MATHEMATICS
KWANGWOON UNIVERSITY
SEOUL 139-701, KOREA
E-mail address: smkim@kw.ac.kr