• Title/Summary/Keyword: K fading channel

Search Result 666, Processing Time 0.019 seconds

Performance Analysis of Space-time Coded MIMO System with Discrete-rate Adaptive Modulation in Ricean Fading Channels

  • Yu, Xiangbin;Rui, Yun;Yin, Xin;Chen, Xiaomin;Li, Mingqi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2493-2508
    • /
    • 2012
  • The performance of a MIMO system with adaptive modulation (AM) and space-time coding over Ricean fading channels for perfect and imperfect channel state information (CSI) is presented. The fading gain value is partitioned into a number of regions by which the modulation is adapted according to the region the fading gain falls in. Under a target bit error rate (BER) constraint, the switching thresholds for AM are given. Based on these results, we derive the calculation formulae of the theoretical spectrum efficiency (SE) and average BER. As a result, closed-form SE expression and accurate BER expression are respectively obtained. Besides, using the approximation of complementary error function, a tightly closed-form approximation of average BER is also derived to simplify the calculation of accurate theoretical BER. Computer simulation shows that the theoretical SE and BER are in good agreement with the corresponding simulation, and the approximate BER is also close to the accurate one. The results show that the AM scheme in Ricean fading channel provides better SE than that in Rayleigh fading channel due to the direct-path propagation, and has performance degradation in SE and BER for imperfect CSI.

BER Derivation of M-PSK ModulationTechnique for Single and Multiple Racian Fading Channel (단일 및 다중 라이시안 페이딩 채널에서 M-PSK 변조기술에서의 BER 유도)

  • Alam, S.M. Shamsul;Choi, Goang-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.4
    • /
    • pp.34-40
    • /
    • 2012
  • In wireless communication system, fading is an unavoidable problem. Hence, errors in form of BER are introduced with the transmitted signal. It is necessary to recognize the behavior of these errors in different fading channels. To obtain the mathematical solution for the average bit error rate(BER) of coherent MPSK, some techniques are presented. In this paper, the impact of diversity is also analyzed over slow and flat Rician fading channel. In here, the value of modulation index, M is varied and the effects of its variation are also depicted. So, these performance curves with different diversity values and fading parameter are useful to design and evaluate the radio channel for faithful communication system.

Study on the Diversity Method to Improve the Performance of the CDMA System in the Mobile Wireless Channel

  • Lee Kwan-Houng
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.1
    • /
    • pp.1-4
    • /
    • 2005
  • This study proposes a new diversity algorithm to improve the signal-to-noise ratio. In the wireless channel, if fading occurs due to the multipaths, the performance of the system is apparently reduced. One of the methods to reduce fadings like this is the diversity method, and this study aims to improve the performance of the system by proposing a new diversity algorithm. This study applied rake receiver, and normalized the wireless channel from the Nakagami fading channel to the Rayleigh fading channel, which set the fading index as 1, because of the multipaths. It applied QPSK and OQPSK modulation methods and applied the convolutional codes, where the code rate is 1/2 and 1/3 and the constraint length is 9, and the turbo code where the constraint length is 4. Under these conditions, this study compared and analyzed the average error probability of direct spread multiple access system. The diversity algorithm proposed in this paper could be applied to the mobile communication and other wireless multimedia communications that require high quality and high reliability.

Performance Analysis of DS-CDMA System in Millimeter-Wave Fading Channel (밀리미터파 페이딩 채널에서 DS-COMA시스템의 성능 분석)

  • Kang, Heau-Jo;Kim, Yoon-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.4
    • /
    • pp.544-550
    • /
    • 2009
  • In this paper, we proposed the radio wave propagation characteristics of the next-generation ultrafast wireless communication system in millimeter-wave fading channel. For considering doppler shift and Rayleigh fading simultaneously, the fading simulator of Jakes model implemented and analyzed the performance of the next-generation wireless communication system. In addition, the error rate characteristics of DS-CDMA system analyzed in the millimeter-wave fading channel and the system performance improved by coding technique and diversity technique.

  • PDF

Performance of the Long Code MMSE Detector With Pilot Channel in the Presence of Rayleigh Fading

  • Lee, Yun-Soo;Chinn, Yong-Oak
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.4
    • /
    • pp.333-338
    • /
    • 2007
  • In this paper we propose a new structure of the long code MMSE receiver with pilot channel, which maintians excellent symbol detection capability even in the presence of Rayleigh fading. We explain analytically how the stability of the receiver weight vector, which is critical to the system performance, can be achieved by compensating the error signal as well as received signal vector distorted by fading channel. Computer simulation shows while maintaining better performance than the conventional matched filter receiver, the proposed long code MMSE receiver can extend its period up to $16{\times}T_b$ in a fading environment.

Underlay Cooperative Cognitive Networks with Imperfect Nakagami-m Fading Channel Information and Strict Transmit Power Constraint: Interference Statistics and Outage Probability Analysis

  • Ho-Van, Khuong;Sofotasios, Paschalis C.;Freear, Steven
    • Journal of Communications and Networks
    • /
    • v.16 no.1
    • /
    • pp.10-17
    • /
    • 2014
  • This work investigates two important performance metrics of underlay cooperative cognitive radio (CR) networks: Interference cumulative distribution function of licensed users and outage probability of unlicensed users. These metrics are thoroughly analyzed in realistic operating conditions such as imperfect fading channel information and strict transmit power constraint, which satisfies interference power constraint and maximum transmit power constraint, over Nakagami-m fading channels. Novel closed-form expressions are derived and subsequently validated extensively through comparisons with respective results from computer simulations. The proposed expressions are rather long but straightforward to handle both analytically and numerically since they are expressed in terms of well known built-in functions. In addition, the offered results provide the following technical insights: i) Channel information imperfection degrades considerably the performance of both unlicensed network in terms of OP and licensed network in terms of interference levels; ii) underlay cooperative CR networks experience the outage saturation phenomenon; iii) the probability that the interference power constraint is satisfied is relatively low and depends significantly on the corresponding fading severity conditions as well as the channel estimation quality; iv) there exists a critical performance trade-off between unlicensed and licensed networks.

Performance Analysis of Channel Coded OFDM 16-QAM Signal on Frequency Selective Rician Fading Channel (주파수 선택성 라이시안 페이딩 채널에서 채널 부호화된 OFDM 16-QAM 신호의 성능 해석)

  • Kim Young-Chul;Oh Chung-Gyun;Kang Duk-Keun
    • Journal of Digital Contents Society
    • /
    • v.5 no.2
    • /
    • pp.121-127
    • /
    • 2004
  • In this paper, we have analyzed the error performance of OFDM (Orthogonal Frequency Division Multiplexing 16 QAM (Quadrature Amplitude Modulation) Signal in a multipath fading environment modeled as frequency selective Rician fading. We have used a three-path model as frequency selective Rician fading used Rician parameter K. A BCH channel coding is used in order to improve the performance. From the result of this analysis, we have known the improvement of the error performance improvement and the error correcting capability by the BCH channel coding. From the results, the error performance, about $10^{-6},$ required in wireless multimedia communications can not be achieved by using only the BCH channel coding technique so that it should be adopted a new technique together.

  • PDF

Simulation Performance of WAVE System with Combined DD-CE and LMMSE Smoothing Scheme in Small-Scale Fading Models

  • Seo, Jeong-Wook;Kwak, Jae-Min;Kim, Dong-Ku
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.3
    • /
    • pp.281-288
    • /
    • 2010
  • This paper investigates the performance of IEEE 802.11p wireless access in vehicular environments (WAVE) system in small-scale fading models reported by Georgia Institute of Technology (Georgia Tech). We redesign the small-scale fading models to be applied to the computer simulation and develop the IEEE 802.11p WAVE physical layer simulator to provide the bit error rate and packet error rate performances. Moreover, a new channel estimator using decision directed channel estimation and linear minimum mean square error smoothing is proposed in order to improve the performance of the conventional least square channel estimator using two identical long training symbols. The simulation results are satisfactorily coincident with the scenarios of Georgia Tech report, and the proposed channel estimator significantly outperforms the conventional channel estimator.

Efficient Signal Feature Detection method using Spectral Correlation Function in the Fading channel

  • Song, Chang-Kun;Kim, Kyung-Seok
    • International Journal of Contents
    • /
    • v.3 no.2
    • /
    • pp.35-39
    • /
    • 2007
  • The cognitive radio communication is taking the attentions because the development of the technique came to be possible to analyze wireless signals. In the IEEE 802.22 WRAN Systems[1], how to detect a spectrum and signals is continuously studied. In this paper, we propose the efficient signal detection method using SCF (Spectral Correlation Function). It is easy to detect the signal feature when we are using the SCF. Because most modulated signals have the cyclo-stationarity which is unique for each signal. But the fading channel effected serious influence even though it detects the feature of the signal. We applied LMS(Least Mean Square) filter for the compensation of the signal which is effected the serious influence in the fading channel. And we analyze some signal patterns through the SCF. And we show the unique signal feature of each signal through the SCF method. It is robust for low SNR(Signal to Noise Ratio) environment and we can distinguish it in the fading channel using LMS Filter.

Decision Feedback Detector for Space-Time Block Codes over Time-Varying Channels

  • Ahn, Kyung-Seung;Baik, Heung-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5C
    • /
    • pp.506-513
    • /
    • 2003
  • Most existing space-time coding (STC) schemes have been developed for flat fading channels. To obtain antenna diversity gain, they rely on channel state information (CSI) required at the receiver through channel estimation techniques. This paper proposes a new decision feedback decoding scheme for Alamouti-based space-time block coding (STBC) transmission over time-selective fading channels. In wireless channels, time-selective fading effects arise mainly due to Doppler shift and carrier frequency offset, Modelling the time-selective fading channels as the first-order Gauss-Markov processes, we use recursive algorithms such as Kalman filtering, LMS and RLS algorithms for channel tracking. The proposed scheme consists of the symbol decoding stage and channel tracking algorithms. Computer simulations confirm that the proposed scheme shows the better performance and robustness to time-selectivity.