• Title/Summary/Keyword: Junction properties

Search Result 370, Processing Time 0.028 seconds

Effects of Alloying Elements on the High Pressure Wear Characteristics of Ductile Cast Iron II - Silicon and Molybdenum (구상흑연주철의 고압하 마멸특성에 미치는 합금원소의 영향 II-Si, Mo)

  • Bang, Woong-Ho;Kang, Choon-Sik;Park, Jae-Hyun;Kweon, Young-Gak
    • Journal of Korea Foundry Society
    • /
    • v.20 no.4
    • /
    • pp.240-246
    • /
    • 2000
  • Surface layer properties such as composition, phase, hardness, and oxide layer condition are very important if the main failure mechanism of metals is wear. Generally, stable and dense oxide layers are known to decrease the wear rate of metals by prohibition of metallic junction occurred between bare metals. Addition of Si above 4 wt% to DCI(Ductile Cast Iron) is reported to enhance the significant oxidation resistance by forming the silicon-rich surface layer which inhibits further oxidation. And addition of up to 2 wt% Mo to high Si ductile iron produces significant increases in high temperature tensile strength, creep strength, thermal fatigue resistance and oxidation resistance. High pressure wear characteristics of unalloyed DCI(Ductile cast Iron), 4.46 wt% Si ductile iron, 4.3 wt% Si-0.52 wt% Mo ductile iron were investigated through unlubricated pin-on-disc wear test. Wear test was carried out at speed of 23m/min, under pressure of 3 MPa and 3.3 MPa. Wear surfaces of each specimen were observed by SEM to determine the wear mechanism under high pressure wear condition. Addition of Si 4.46 wt% severely deteriorated wear property of ductile iron compared to unalloyed DCI. But combined addition of Si 4.3 wt%andMo0.52wt%decreasedthefrictioncoefficient(${\mu}$)ofductileironsandremarkablydelayedthemild-severeweartransition.

  • PDF

Effects of Electrostatic Discharge Stress on Current-Voltage and Reverse Recovery Time of Fast Power Diode

  • Bouangeune, Daoheung;Choi, Sang-Sik;Cho, Deok-Ho;Shim, Kyu-Hwan;Chang, Sung-Yong;Leem, See-Jong;Choi, Chel-Jong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.4
    • /
    • pp.495-502
    • /
    • 2014
  • Fast recovery diodes (FRDs) were developed using the $p^{{+}{+}}/n^-/n^{{+}{+}}$ epitaxial layers grown by low temperature epitaxy technology. We investigated the effect of electrostatic discharge (ESD) stresses on their electrical and switching properties using current-voltage (I-V) and reverse recovery time analyses. The FRDs presented a high breakdown voltage, >450 V, and a low reverse leakage current, < $10^{-9}$ A. From the temperature dependence of thermal activation energy, the reverse leakage current was dominated by thermal generation-recombination and diffusion, respectively, at low and high temperature regions. By virtue of the abrupt junction and the Pt drive-in for the controlling of carrier lifetime, the soft reverse recovery behavior could be obtained along with a well-controlled reverse recovery time of 21.12 ns. The FRDs exhibited excellent ESD robustness with negligible degradations in the I-V and the reverse recovery characteristics up to ${\pm}5.5$ kV of HBM and ${\pm}3.5$ kV of IEC61000-4-2 shocks. Likewise, transmission line pulse (TLP) analysis reveals that the FRDs can handle the maximum peak pulse current, $I_{pp,max}$, up to 30 A in the forward mode and down to - 24 A in the reverse mode. The robust ESD property can improve the long term reliability of various power applications such as automobile and switching mode power supply.

Characteristics of Magnetic Tunnel Junctions Incorporating Nano-Oxide Layers (나노 산화층을 사용한 자기터널접합의 특성)

  • Chu, In-Chang;Chun, Byong-Sun;Song, Min-Sung;Lee, Seong-Rae;Kim, Young-Keun
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.2
    • /
    • pp.136-139
    • /
    • 2006
  • The tunneling magnetoresistance (TMR) ratios of magnetic tunnel junctions (MTJs), in general, decrease abruptly above 250$^{\circ}C$ due to Mn interdiffusion from an antiferromagnet IrMn layer to a ferromagnetic CoFe and/or a tunnel barrier. To improve thermal stability, we prepared MTJs with nano-oxide layers. Using a MTJ structure consisting of underlayer CoNbZr 4/bufferlayer CoFe 10/antiferromaget IrMn 7.5/pinned layer CoFe 3/tunnel barrier AlO/freelayer CoFe 3/capping CoNbZr 2 (nm), we placed a nano-oxide layer (NOL) into the underlayer or bufferlayer. Then, the thermal, structural and magneto-electric properties were measured. The TMR ratio, surface flatness, and thermal stability of the MTJs with NOLs were promoted.

The Photovoltaic Properties & Fabrication of $n^{+}$-p InP Homojunction Diodes ($n^{+}$-p InP 동종접합 다이오드의 제작과 광기전력 특성)

  • 최준영;문동찬;김선태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.05a
    • /
    • pp.110-113
    • /
    • 1992
  • $n^{+}$-p homojunction InP diodes were fabricated using thermal diffusion of Sulfur into p-type InP substrates(Zn doped, LEC grown, p=2.3${\times}$10$^{16}$c $m^{-3}$). The Sulfur diffusion was carried out at 550$^{\circ}C$, 600$^{\circ}C$, 700$^{\circ}C$ for 4 hours in a sealed quartz ampule(~2ml in volume) containing 5mg I $n_2$ $S_3$ and Img of red phosphorus. The formed junction depth was below 0.5$\mu\textrm{m}$. After the removal of diffused layer on the rear surface of the wafer, the beak ohmic contacts to the p-side were made with a vacuum evaporation of An-Zn(2%) followed by an annealing at 450$^{\circ}C$ for 5 minutes in flowing Ar gas. The front contacts were made with a vacuum evaporation of Au-Ge(12%) followed by an annealing at 500$^{\circ}C$ for 3 minutes in flowing Ar gas. The remarkable sprctral response of the cells obtained at the region of 6000-8000${\AA}$ region. The open circuit voltage $V_{oc}$ , short circuit current density $J_{sc}$ , fill factor and conversion efficiency η of the fabricated pattern solar cells(diffusion condition : at 700$^{\circ}C$ for 4 hours) were 0.660V, 14.04㎃/$\textrm{cm}^2$, 0.6536 and 10.09%, respectively.y.

  • PDF

A STUDY ON THE EFFECT OF MOISTURE ON APICAL SEALING PROPERTY OF ROOT CANAL (근관충전 시 수분오염이 치근단 폐쇄성에 미치는 영향에 관한 연구)

  • Lim, Sung-Sam;Kang, Myung-Whai
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.2
    • /
    • pp.628-634
    • /
    • 1996
  • The purpose of this study was to investigate the effect of moisture on apical sealing properties of root canal. Fifty five single rooted human teeth were selected from maxillary and mandibular teeth. After removing crown portion at the cemento-enamel junction, all teeth were routinely prepared with step-back method. And then, the canals were dried with paper point and the teeth were randomly divided into 3 groups of 15 teeth each, and remaining 10 teeth were used as positive and negative control teeth : Group 1 were irrigated with 1ml of 95% alcohol and dried with air and paper point. Group 2 and 3 were intentionally contaminated with 0.05ml of 3.5% NaOCl or saliva, respectively. All the teeth were obturated with sealapex and gutta percha cone by lateral condensation technique, and covered with two coat of nail varnish after 48 hours of obturation. The teeth were immersed in india ink for 1 week and cleaned with methyl salicylate and then the degree of dye penetration were measured with stereomicroscope. The data were analyzed statistically by one-way ANOVA. The results were as follows : 1. All experimental groups showed varying degrees of dye penetration, and the mean degree of dye penetration was 0.1mm to 0.7mm. 2. Saliva contamination group(group 3) showed the highest amount of dye penetration, followed by NaOCl contamination group, then alcohol dried group, but there was no significant difference among three experimental groups. * This results suggest that there was no significant differences of apical leakage after canal obturation between alcohol dried canal and moisture present canals and the use of alcohol instead of paper point is unnecessary to dry the canals prior to canal filling. But other factors such as bacterial contamination and sealer discoloration by moisture must be considered in application of this results to clinical practice.

  • PDF

Characterization of Light Effect on Photovoltaic Property of Poly-Si Solar Cell by Using Photoconductive Atomic Force Microscopy (Photoconductive Atomic Force Microscopy를 이용한 빛의 세기 및 파장의 변화에 따른 폴리실리콘 태양전지의 광전특성 분석)

  • Heo, Jinhee
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.680-684
    • /
    • 2018
  • We investigate the effect of light intensity and wavelength of a solar cell device using photoconductive atomic force microscopy(PC-AFM). A $POCl_3$ diffusion doping process is used to produce a p-n junction solar cell device based on a polySi wafer, and the electrical properties of prepared solar cells are measured using a solar cell simulator system. The measured open circuit voltage($V_{oc}$) is 0.59 V and the short circuit current($I_{sc}$) is 48.5 mA. Moreover, the values of the fill factors and efficiencies of the devices are 0.7 and approximately 13.6 %, respectively. In addition, PC-AFM, a recent notable method for nano-scale characterization of photovoltaic elements, is used for direct measurements of photoelectric characteristics in limited areas instead of large areas. The effects of changes in the intensity and wavelength of light shining on the element on the photoelectric characteristics are observed. Results obtained through PC-AFM are compared with the electric/optical characteristics data obtained through a solar simulator. The voltage($V_{PC-AFM}$) at which the current is 0 A in the I-V characteristic curves increases sharply up to $18W/m^2$, peaking and slowly falling as light intensity increases. Here, $V_{PC-AFM}$ at $18W/m^2$ is 0.29 V, which corresponds to 59 % of the average $V_{oc}$ value, as measured with the solar simulator. Furthermore, while the light wavelength increases from 300 nm to 1,100 nm, the external quantum efficiency(EQE) and results from PC-AFM show similar trends at the macro scale but reveal different results in several sections, indicating the need for detailed analysis and improvement in the future.

Passivating Contact Properties based on SiOX/poly-Si Thin Film Deposition Process for High-efficiency TOPCon Solar Cells (고효율 TOPCon 태양전지의 SiOX/poly-Si박막 형성 기법과 passivating contact 특성)

  • Kim, Sungheon;Kim, Taeyong;Jeong, Sungjin;Cha, Yewon;Kim, Hongrae;Park, Somin;Ju, Minkyu;Yi, Junsin
    • New & Renewable Energy
    • /
    • v.18 no.1
    • /
    • pp.29-34
    • /
    • 2022
  • The most prevalent cause of solar cell efficiency loss is reduced recombination at the metal electrode and silicon junction. To boost efficiency, a a SiOX/poly-Si passivating interface is being developed. Poly-Si for passivating contact is formed by various deposition methods (sputtering, PECVD, LPCVD, HWCVD) where the ploy-Si characterization depends on the deposition method. The sputtering process forms a dense Si film at a low deposition rate of 2.6 nm/min and develops a low passivation characteristic of 690 mV. The PECVD process offers a deposition rate of 28 nm/min with satisfactory passivation characteristics. The LPCVD process is the slowest with a deposition rate of 1.4 nm/min, and can prevent blistering if deposited at high temperatures. The HWCVD process has the fastest deposition rate at 150 nm/min with excellent passivation characteristics. However, the uniformity of the deposited film decreases as the area increases. Also, the best passivation characteristics are obtained at high doping. Thus, it is necessary to optimize the doping process depending on the deposition method.

Study on the Ku band Solid-State Power Amplifier(SSPA) through the 40 W-grade High Power MMIC Development and the Combination of High Power Modules (40 W급 고출력 MMIC 개발과 고출력 증폭기 모듈 결합을 통한 Ku 밴드 반도체형 송신기(SSPA) 개발에 관한 연구)

  • Kyoungil Na;Jaewoong Park;Youngwan Lee;Hyeok Kim;Hyunchul Kang;SoSu Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.227-233
    • /
    • 2023
  • In this paper, to substitute the existing TWTA(Travailing Wave Tube Amplifier) component in small radar system, we developed the Ku band SSPA(Solid-State Power Amplifier) based on the fabrication of power MMIC (Monolithic Microwave Integrated Circuit) chips. For the development of the 500 W SSPA, the 40 W-grade power MMIC was designed by ADS(Advanced Design System) at Keysight company with UMS GH015 library, and was processed by UMS foundry service. And 70 W main power modules were achieved the 2-way T-junction combiner method by using the 40 W-grade power MMICs. Finally, the 500 W SSPA was fabricated by the wave guide type power divider between the drive power amplifier and power modules, and power combiner with same type between power modules and output port. The electrical properties of this SSPA had 504 W output power, -58.11 dBc spurious, 1.74 °/us phase variation, and -143 dBm/Hz noise level.

An Electrical Properties Analysis of CMOS IC by Narrow-Band High-Power Electromagnetic Wave (협대역 고출력 전자기파에 의한 CMOS IC의 전기적 특성 분석)

  • Park, Jin-Wook;Huh, Chang-Su;Seo, Chang-Su;Lee, Sung-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.9
    • /
    • pp.535-540
    • /
    • 2017
  • The changes in the electrical characteristics of CMOS ICs due to coupling with a narrow-band electromagnetic wave were analyzed in this study. A magnetron (3 kW, 2.45 GHz) was used as the narrow-band electromagnetic source. The DUT was a CMOS logic IC and the gate output was in the ON state. The malfunction of the ICs was confirmed by monitoring the variation of the gate output voltage. It was observed that malfunction (self-reset) and destruction of the ICs occurred as the electric field increased. To confirm the variation of electrical characteristics of the ICs due to the narrow-band electromagnetic wave, the pin-to-pin resistances (Vcc-GND, Vcc-Input1, Input1-GND) and input capacitance of the ICs were measured. The pin-to-pin resistances and input capacitance of the ICs before exposure to the narrow-band electromagnetic waves were $8.57M{\Omega}$ (Vcc-GND), $14.14M{\Omega}$ (Vcc-Input1), $18.24M{\Omega}$ (Input1-GND), and 5 pF (input capacitance). The ICs exposed to narrow-band electromagnetic waves showed mostly similar values, but some error values were observed, such as $2.5{\Omega}$, $50M{\Omega}$, or 71 pF. This is attributed to the breakdown of the pn junction when latch-up in CMOS occurred. In order to confirm surface damage of the ICs, the epoxy molding compound was removed and then studied with an optical microscope. In general, there was severe deterioration in the PCB trace. It is considered that the current density of the trace increased due to the electromagnetic wave, resulting in the deterioration of the trace. The results of this study can be applied as basic data for the analysis of the effect of narrow-band high-power electromagnetic waves on ICs.

Magnetic Properties of Three-layered Ferromagnetic Films with a NiFeCuMo Intermediately Super-soft Magnetic Layer (강자성층 사이에 초연자성 NiFeCuMo 중간층을 삽입한 3층 박막구조의 자기적 특성)

  • Choi, Jong-Gu;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.4
    • /
    • pp.129-133
    • /
    • 2010
  • Two-layered ferromagnetic alloy films (NiFe, CoFe) with a Conetic (NiFeCuMo) intermediately soft magnetic layer of different thickness were investigated to correlate the coercivity values and magnetization process with the strength of saturation field of hard axis. Thickness dependence of the $H_{EC}$ (coercivity of easy axis), $H_{HS}$ (saturation field of hard axis.), and X (susceptibility) of NiFe and NiFeCuMo thin films for the glass/Ta(5 nm)/[CoFe or NiFe(5 nm-t/2)]/NiFeCuMo(t = 0, 4, 6, 8, 10 nm)/[CoFe or NiFe(5 nm-t/2)]/Ta(5 nm) films prepared by the ion beam deposition method was measured. The magnetic properties $H_{EC}$, $H_{HS}$, and X of two-layered ferromagnetic CoFe, NiFe films with a NiFeCuMo intermediately super-soft magnetic layer were strongly depended on the thickness of NiFeCuMo layer. The value of the coercivity and magnetic susceptibility of the NiFeCuMo film decreased by 25% and doubled relative to that of the NiFe film.