• Title/Summary/Keyword: Journal Bearing Wear

Search Result 200, Processing Time 0.023 seconds

Friction Characteristics of Hexagonal Array Micro-scale Dimple Pattern by Density (Hexagonal Array Micro-Scale Dimple Pattern의 밀도에 따른 마찰특성)

  • Chae, Young-Hoon;Jang, Chung-Sun;Choi, Won-Sik
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.368-373
    • /
    • 2008
  • This paper will investigate the friction characteristics of a 100m Hexagonal Array, Micro-scale Dimple Pattern, on bearing steel. These characteristics are researched by utilizing a pin-on-disk wear test machine, under various test conditions. The reduction of friction is a necessary requirement for the improved efficiency of this machine. As the speed increases, there is a decrease in the effect of the dimple of friction characteristic, with substantially little change to density. Conversely, as the load increases, the dimple pattern grows larger, resulting in a difference in the texture of these two components. At a dimple density of 10% the friction characteristic is easily demonstrated, with a consistent change in both speed and load.

Analysis of Contact Pressure for Material Combination in Unicompartmental Knee Implant (반치환 무릎 인공관절에서의 재료조합에 따른 접촉압력 분석)

  • Noh, Tae-Heon;Chun, Heoung-Jae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.1
    • /
    • pp.23-29
    • /
    • 2018
  • In knee implants, contact pressure has a significant effect on wear. In this study, finite element analysis is performed using the knee implant model developed in the previous research. The contact pressures for a total of 10 knee implant materials combinations were analyzed using the combinations actually used in research and industry. In order to calculate the contact pressure, The load was applied when the flection angle of knee was $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$. The result of contact pressure revealed the smallest contact pressure in the titanium alloy-UHMWPE combination. In the case of UHMWPE, contact pressure did not change much with any material used in the femur. Compared the combination with the largest contact pressure and the smallest contact pressure, the difference was 0.77%. On the other hand, Carbon / PEEK composites showed 5.3% difference when the contact pressure was the largest and the smallest. It can be seen that when the Carbon / PEEK composite material is used as the bearing part, the material of the femoral part affects the wear. This study will contribute to the prediction of knee implant wear and minimization of wear.

Cementless Total Hip Arthroplasty Using Ceramic Femoral Head on Cross-Linked Ultra-High-Molecular Weight Polyethylene Liner in Patients Older than 65 Years: Minimum Five-Year Follow-Up Results (세라믹 대퇴 골두 및 교차결합 초고분자량 폴리에틸렌 라이너를 이용한 65세 이상 무시멘트형 인공 고관절 전치환술: 최소 5년 중기 추시 결과)

  • Yun, Ho Hyun;Cheong, Ji Young;Sim, Hyun Bo;Park, Jae Hong
    • Journal of the Korean Orthopaedic Association
    • /
    • v.53 no.6
    • /
    • pp.490-497
    • /
    • 2018
  • Purpose: To evaluate the utility of ceramic-on-polyethylene articular bearing surface when cementless total hip arthroplasty is performed in patients older than 65 years through an analysis of the minimum five-year follow-up results using the ceramic femoral head and cross-linked polyethylene liner. Materials and Methods: From March 2010 to September 2012, 51 patients (56 hips) who were older than 65 years were enrolled in this retrospective study. The mean age at surgery was $70.9{\pm}5.1years$ old. A clinical assessment was analyzed using the Harris hip score. For the radiographic assessment, the cup inclination and anteversion, stem alignment, and wear amount were measured. The postoperative complications were also determined. Results: The mean Harris hip score was improved from preoperative 48 points to postoperative 87 points (p<0.05). The mean cup inclination was $40.9^{\circ}{\pm}6.4^{\circ}$ and the mean cup anteversion was $20.3^{\circ}{\pm}8.1^{\circ}$. The mean cup anteversion of the elevated liner-used group (16 cases) was $14.3^{\circ}{\pm}7.9^{\circ}$ and the mean cup anteversion of the neutral liner used group (40 cases) was $22.4^{\circ}{\pm}9.1^{\circ}$ (p<0.05). The mean stem alignment angle was $0^{\circ}$ (range, varus $4^{\circ}$-valgus $4^{\circ}$). The mean linear wear amount was $0.458{\pm}0.041mm$ and the average annual linear wear rate was $0.079{\pm}0.032mm/yr$. Six cases (10.7%) of intraoperative periprosthetic femoral fractures were encountered. Conclusion: Based on these results, the use of a ceramic-on-polyethylene articular bearing surface in elderly patients with cementless total hip arthroplasty is beneficial. On the other hand, careful effort is needed to prevent intraoperative periprosthetic femoral fractures.

Microstructure and Mechanical Properties of β-SiAlON Ceramics Fabricated Using Self-Propagating High-Temperature Synthesized β-SiAlON Powder

  • Kim, Min-Sung;Go, Shin-Il;Kim, Jin-Myung;Park, Young-Jo;Kim, Ha-Neul;Ko, Jae-Woong;Yun, Jon-Do
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.292-297
    • /
    • 2017
  • ${\beta}-SiAlON$, based on its high fracture toughness, good strength and low abrasion resistance, has been adopted in several industrial fields such as bearings, turbine blades and non-ferrous metal refractories. In general, ${\beta}-SiAlON$ is fabricated by reactive sintering using expensive $Si_3N_4$ and AlN as starting materials. On the other hand, in this study, a cheaper ${\beta}-SiAlON$ starting powder synthesized by SHS was employed to improve price competitiveness compared to that of the reactive sintering process. ${\beta}-SiAlON$ ceramics with various content of the sintering additive $Y_2O_3$ up to 7 wt% were fabricated by conventional pressureless sintering at $1800^{\circ}C$ for 2 to 8 h under $N_2$ pressure of 0.1 MPa. The specimen with 3 wt% $Y_2O_3$ exhibited the best mechanical properties: hardness of 14 GPa, biaxial strength of 830 MPa, fracture toughness of $5MPa{\cdot}m^{1/2}$ and wear rate of about $3{\times}10^{-6}mm^3/N{\cdot}m$.

Wear Mechanisum of Carbon Bearing BOF Refreactories (전로용 MgO-C질 내화벽돌의 손상요인)

  • 김의훈;오영우;이철수;김종성;김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.1
    • /
    • pp.51-59
    • /
    • 1986
  • It was the first time the MgO-C brick was developed for the lining materials in the hot spots in electric are furnace in 1972. MgO-C brick is high registant to thermal and structural spalling. Futhermore for the reason that carbon is hard to react with slag and MgO is high fireproof MgO-C brick shows a high corrosion registance to slag attack compared with conventional basic refractories. Owing to their excellent properties the use of MgO-C refractories are being developed widely in the field of shaped refractories and even in that of monolithic refractories. In this paper the oxidation of carbon the infiltration of slag into the brick texture and effects of additions were investigated. The results obtained were as follows : 1) The use of fused MgO-clinker and high purity carbon as raw materials increased the corosion registance and hot modulus of rupture of MgO-C brick. 2) As the oxidation reaction of the carbon proceeded the slag infiltrated into the brick texture. And then the slag components reacted with the MgO grains and formed low melting point compounds particulary CaO.MgO.$SiO_2$ and 3CaO.MgO.$2SiO_2$ that resulted in the wear of the brick. 3) It is recongnized the Al, Si, $B_3C$ effects on the oxidation registant properties of MgO-C brick by contribu-ting to the decrease of permeability according to the formation of $Al_4C_3$, SiC, $B_2O_3$ and the decrease of open pores relating to the formation of MgO.Al2O3, $SiO_2$, 3MgO.$B_2O_3$ at the decarbonized layer.

  • PDF

Experimental Investigation of Concave and Convex Micro-Textures for Improving Anti-Adhesion Property of Cutting Tool in Dry Finish Cutting

  • Kang, Zhengyang;Fu, Yonghong;Chen, Yun;Ji, Jinghu;Fu, Hao;Wang, Shulin;Li, Rui
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.583-591
    • /
    • 2018
  • Tool-chip adhesion impacts on cutting performance significantly, especially in finish cutting process. To promote cutting tools' anti-adhesion property, the concave micro-grooves texture (MGT) and convex volcano-like texture (VLT) were fabricated separately on lathe tools' rake faces by laser surface texturing (LST). Various orientations of MGT and different area densities (9% and 48%) and regions (partial and full) of VLT were considered in textured patterns designing. The following orthogonal cutting experiments, machining of aluminum alloy 5038, analyzed tools' performances including cutting force, cutting stability, chip shape, rake face adhesion and abrasion. It indicated that under dry finish cutting conditions, MGT contributed to cutting stability and low cutting forces, meanwhile friction and normal force reduced by around 15% and 10%, respectively with a weak correlation to the grooves' orientation. High density VLT tools, on the other hand, presented an obvious anti-adhesion property. A $5{\mu}m$ reduction of crater wear's depth can be observed on textured rake faces after long length cutting and textured rake faces presented half size of BUE regions comparing to the flat tool, however, once the texture morphologies were filled or worn, the anti-adhesion effect could be invalid. The bearing ratio curve was employed to analysis tool-chip contact and durability of textured surfaces contributing to a better understanding of anti-adhesion and enhanced durability of the textured tools.

A Study on the Characteristics of the Parameters for the Statistical Analysis of Vibration Signal by Using Bearing Wear Test (베어링 마모시험을 이용한 진동신호의 통계적 파라미터 특성연구)

  • Jun, Oh-Sung;Hwang, Cheol-Ho;Yoon, Byung-Ok;Eun, Hee-Joon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.5-12
    • /
    • 1989
  • This paper is concerned with the characteristics on the statistical parameters of vibration signal from bearing with changing its operating conditions as well as the spreading of faults. The rms, Kurtosis, crest factor, probability of exceedance and probability density function have been chose as the statistical parameters. To characterize of each, vibration signals have been recorded from four ball tester at different loads, operation speeds and time. The values of the statistical parameters for each frequency band have been calculated after A/D conversion and digital filtering of the recorded signals. It has been found that unlike rms values the statistical parameters such as Kurtosis etc. are almost unchanging with the change of the operating conditions such as load and speed. This suggests that the statistical parameters may be used for determining the development of faults independent of the operating conditions. In fact, the statistical parameters deviate considerably from their respective normal values when the faults developed under load conditions in the samples, conforming the suggestion.

  • PDF

Comparison of Mechanical properties and Surface Friction of White Metals Produced by Centrifugal and Laser Cladded on SCM440 (원심주조방식과 레이저 클래딩 증착법을 통한 화이트메탈의 기계 및 마찰특성 비교)

  • Jeong, Jae-Il;Kim, Dong-Hyuk;Park, Jin-Young;Oh, Joo-Young;Choi, Si-Geun;Kim, Seock-Sam;Cho, Young Tae;Lee, Ho;Ham, Seung-Sik;Kim, Jong-Hyoung
    • Tribology and Lubricants
    • /
    • v.34 no.3
    • /
    • pp.84-92
    • /
    • 2018
  • Bearings are essential for reducing vibration and wear, in order to achieve high durability and increase longevity. White metal treatment of tilting pads via centrifugal casting method has the possibility of increasing durability. However, this manufacturing method has drawbacks such as long processing time, high defect rate, and harmful health effects. Laser cladding deposition technique is a powerful method that can address these issues by decreasing the processing time and providing good adhesion. In this study, we suggest optimum conditions for laser cladding deposition that can be used in industrial applications. We deposited a soft white metal layer on SCM440 that is primarily used in shafts to minimize wear of bearing pads. During the laser deposition process, we controlled factors such as laser power, powder feed rate, and laser head speed to determine the optimum conditions. In addition, we measured the hardness using micro Vickers, and performed field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and friction tests to investigate the mechanical properties and surface characteristics for different parameters. Based on the experimental results, we suggest that laser power, powder feed rate, and laser head speed of 1.3 kW, 2.5 rpm, and 10 mm/s, respectively, constitute the optimum conditions for producing white metals using laser cladding.

Improvement in Tribological Properties of Carbon Steel Sintered by Powder Metallurgy (분말 야금에 의해 소결된 강철의 트라이볼로지 특성 향상)

  • Choi, S.I.M.;Karimbaev, R.;Pyun, Y.S.;Amanov, A.
    • Tribology and Lubricants
    • /
    • v.36 no.4
    • /
    • pp.244-252
    • /
    • 2020
  • Materials manufactured by powder metallurgy (PM) are widely used in various applications such as water pump, shock absorber, and airplane components due to the reduction in the cost and weight. In this study, tribological properties of carbon steel subjected by surface treatment were investigated. The main purpose is to increase the strength and improve the tribological properties by reducing pores that formed by PM. Moreover, the surface treatment was carried out at room and high temperatures (RT and HT). The surface roughness of the untreated (NON) and treated (AFTER) samples was measured. It was found that the surface roughness was reduced after both the RT AFTER and HT AFTER compared to RT NON sample. The tribological properties of the samples were performed against bearing steel ball under dry conditions. The friction coefficient of the RT NON samples was reduced by 22% and 56% RT AFTER and HT AFTER, respectively. The wear volume of the RT NON sample was also reduced by 43% and 87% RT AFTER and HT AFTER, respectively. Tribocorrosion tests were also performed and it was found that the surface of the RT AFTER, HT AFTER samples was less corroded compared to RT NON sample. The HT AFTER sample demonstrated a relatively higher corrosion potential in comparison with the RT AFTER samples. Hence, it was confirmed that after surface modification the surface roughness and hardness of the samples were significantly improved resulting in improvement in tribological and tribocorrosion behaviors of PM carbon steel.

A Study on Tribological Properties of 3D-Printed Surface with Respect to Sliding Orientation (3D 프린팅된 표면의 슬라이딩 방향에 따른 트라이볼로지적 특성 연구)

  • Sim, Jae Woong;Caro, Christian Nicholas De;Seo, Kuk-Jin;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.337-342
    • /
    • 2019
  • This paper presents an experimental investigation of friction and wear characteristic with respect to patterns occurring on the surface of 3D printed polymer products by fused deposition modeling method. The purpose of this study was to investigate the effect of the patterns and sliding directions on the tribological properties of 3D printed polymer surface. A cubic specimen was printed using polylactic acid filament as the printing material. Friction tests were conducted for different directions with respect to the patterns that were generated on the top and the side surfaces of the specimen, by using a ball-on-reciprocating type tribotester. SUJ2 bearing ball of which the diameter was 11 times greater than the width of the largest pattern was used as the counter surface to assess the frictional behavior. Friction tests were conducted on the top and the side surfaces with respect to the patterns in 3 (0°, 45°, 90°) different directions respectively. Coefficient of friction increased as cycles increased in all cases. The results of the tests showed that the lowest coefficient of friction was measured with the 45° sliding direction on the side surface. The wear rate was the lowest at 45° sliding direction on the side surface, while it was the highest at 0° sliding direction on the top surface. Coefficient of friction of about 0.45 was determined to be the converging value on the top compared to the side surface.