Browse > Article
http://dx.doi.org/10.7734/COSEIK.2018.31.1.23

Analysis of Contact Pressure for Material Combination in Unicompartmental Knee Implant  

Noh, Tae-Heon (Department of Mechanical Engineering, Yonsei Univ.)
Chun, Heoung-Jae (Department of Mechanical Engineering, Yonsei Univ.)
Publication Information
Journal of the Computational Structural Engineering Institute of Korea / v.31, no.1, 2018 , pp. 23-29 More about this Journal
Abstract
In knee implants, contact pressure has a significant effect on wear. In this study, finite element analysis is performed using the knee implant model developed in the previous research. The contact pressures for a total of 10 knee implant materials combinations were analyzed using the combinations actually used in research and industry. In order to calculate the contact pressure, The load was applied when the flection angle of knee was $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$. The result of contact pressure revealed the smallest contact pressure in the titanium alloy-UHMWPE combination. In the case of UHMWPE, contact pressure did not change much with any material used in the femur. Compared the combination with the largest contact pressure and the smallest contact pressure, the difference was 0.77%. On the other hand, Carbon / PEEK composites showed 5.3% difference when the contact pressure was the largest and the smallest. It can be seen that when the Carbon / PEEK composite material is used as the bearing part, the material of the femoral part affects the wear. This study will contribute to the prediction of knee implant wear and minimization of wear.
Keywords
unicompartmental knee implant; finite element analysis; contact pressure; material combination;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alsamhan, A.M. (2013) Rationale Analysis of Human Artificial Knee Replacements, J. King Saud Univ.-Eng. Sci., 25(1), pp.49-54.   DOI
2 Bahraminasab, M., Jahan, A. (2011) Material Selection For Femoral Component of Total Knee Replacement using Comprehensive VIKOR, Mater. & Des., 32(8), pp.4471-4477.   DOI
3 Bal, B.S., Khandkar, A., Lakshminarayanan, R., Clarke, I., Hoffman, A. A., Rahaman, M.N. (2009) Fabrication and Testing of Silicon Nitride Bearings in Total Hip Arthroplasty: Winner of The 2007 "Hap" Paul Award, J. Arthroplast., 24(1), pp.110-116.   DOI
4 Bartel, D.L., Bicknell, V.L., Wright, T.M. (1986) The Effect of Conformity, Thickness, and Material on Stresses in Ultra-High Molecular Weight Components for Total Joint Replacement, JBJS, 68(7), pp.1041-1051.   DOI
5 Brailovski, V., Prokoshkin, S., Gauthier, M., Inaekyan, K., Dubinskiy, S., Petrzhik, M., Filonov, M. (2011) Bulk and Porous Metastable Beta Ti-Nb-Zr (Ta) Alloys for Biomedical Applications, Mater. Sci. & Eng.: C, 31(3), pp.643-657.   DOI
6 Cadambi, A., Engh, G.A., Dwyer, K.A., Vinh, T.N. (1994) Osteolysis of the Distal Femur after Total Knee Arthroplasty, J. Arthroplast., 9(6), pp.579-594.   DOI
7 Cho, H.J., Wei, W. ., Kao, H.C., Cheng, C.K. (2004) Wear Behavior of Uhmwpe Sliding on Artificial Hip Arthroplasty Materials, Mater. Chem. & Phys., 88(1), pp.9-16.   DOI
8 Crockett, R., Roba, M., Naka, M., Gasser, B., Delfosse, D., Frauchiger, V., Spencer, N. D. (2009) Friction, Lubrication, and Polymer Transfer between Uhmwpe and Cocrmo Hip-Implant Materials: a Fluorescence Microscopy Study, J. Biomed. Mater. Res. Part A, 89(4), pp.1011-1018.
9 Emerton, M.E., Burton, D. (2001) (Ii) The Role of Unicompartmental Knee Replacement, Curr. Orthop., 15(6), pp.406-412.   DOI
10 Fregly, B.J., Sawyer, W.G., Harman, M.K., Banks, S.A. (2005) Computational Wear Prediction of a Total Knee Replacement From in Vivo Kinematics, J. Biomech., 38(2), pp.305-314.   DOI
11 Geetha, M., Singh, A.K., Asokamani, R., Gogia, A.K. (2009) Ti Based Biomaterials, The Ultimate Choice for Orthopaedic Implants-A Review, Prog. Mater. Sci., 54(3), pp.397-425.   DOI
12 Innocenti, B., Labey, L., Kamali, A., Pascale, W., Pianigiani, S. (2014) Development and Validation of a Wear Model to Predict Polyethylene Wear in a Total Knee Arthroplasty: a Finite Element Analysis, Lubricants, 2(4), pp.193-205.   DOI
13 Kang, L., Galvin, A.L., Fisher, J., Jin, Z. (2009) Enhanced Computational Prediction of Polyethylene Wear in Hip Joints by Incorporating Cross-Shear and Contact Pressure in Additional to Load and Sliding Distance: Effect of Head Diameter, J. Biomech., 42(7), pp.912-918.   DOI
14 Keegan, G.M., Learmonth, I.D., Case, C. (2008) A Systematic Comparison of the Actual, Potential, and Theoretical Health Effects of Cobalt and Chromium Exposures from Industry and Surgical Implants, Crit. Rev. Toxicol., 38(8), pp.645-674.   DOI
15 Keene, G.C., Forster, M.C. (2005) (Iii) Modern Unicompartmental Knee Replacement, Curr. Orthop., 19(6), pp.428-445.   DOI
16 Kuster, M.S., Horz, S., Spalinger, E., Stachowiak, G.W., Gachter, A (2000). The Effects of Conformity and Load in Total Knee Replacement, Clin. Orthop. & Relat. Res., 375, pp.302-312.   DOI
17 Long, M., Rack, H.J. (1998) Titanium Alloys in Total Joint Replacement-A Materials Science Perspective, Biomater., 19(18), pp.1621-1639.   DOI
18 Mendonca, G., Mendonca, D.B., Simoes, L.G., Araujo, A.L., Leite, E.R., Duarte, W.R., Cooper, L.F. (2009) The Effects of Implant Surface Nanoscale Features on Osteoblast-Specific Gene Expression, Biomater., 30(25), pp.4053-4062.   DOI
19 Mantripragada, V.P., Lecka-Czernik, B., Ebraheim, N.A., Jayasuriya, A.C. (2013) An Overview of Recent Advances in Designing Orthopedic and Craniofacial Implants, J. Biome. Mater. Res. Part A, 101(11), pp.3349-3364.   DOI
20 Mattila, R. (2012) Hip and Knee Replacement Implants: Information Package for Nurses: Hoitonetti.
21 Minoda, Y., Kobayashi, A., Iwaki, H., Miyaguchi, M., Kadoya, Y., Ohashi, H., Takaoka, K. (2005) Polyethylene Wear Particle Generation in Vivo in an Alumina Medial Pivot Total Knee Prosthesis, Biomater., 26(30), pp.6034-6040.   DOI
22 Morrison, J.B. (1970) The Mechanics of Muscle Function in Locomotion, J. Biomech., 3(4), pp.431-451.   DOI
23 Muller, U., Imwinkelried, T., Horst, M., Sievers, M., Graf-Hausner, U. (2006) Do Human Osteoblasts Grow into Open-Porous Titanium, Eur Cell Mater, 11, pp.8-15.   DOI
24 Perl, D.P., Brody, A.R. (1980) Alzheimer'S Disease: X-Ray Spectrometric Evidence of Aluminum Accumulation in Neurofibrillary Tangle-Bearing Neurons, Sci., 208(4441), pp.297-299.   DOI
25 Piconi, C., Maccauro, G., Muratori, F., Prever, E.B.O. (2003) Alumina and Zirconia Ceramics in Joint Replacements, J. Appl. Biomater. & Biomech., 1(1), pp.19-32.
26 Schmalzried, T.P., Campbell, P., Schmitt, A.K., Brown, I., Amstutz, H.C. (1997) Shapes and Dimensional Characteristics of Polyethylene Wear Particles Generated in Vivo by Total Knee Replacements Compared to Total Hip Replacements, J. Biome. Mater. Res. Part A, 38(3), pp.203-210.   DOI
27 Van Den Heever, D.J., Scheffer, C., Erasmus, P., Dillon, E. (2011) Contact Stresses in a Patient-Specific Unicompartmental Knee Replacement, Clin. Biomech., 26(2), pp.159-166.   DOI
28 Shi, J. (2007) Finite Element Analysis of Total Knee Replacement Considering Gait Cycle Load and Malalignment, Doctoral Dissertation, University of Wolverhampton.
29 Song, Y., Park, C.H., Moriwaki, T. (2010) Mirror Finishing of Co-Cr-Mo Alloy using Elliptical Vibration Cutting, Precis. Eng., 34(4), pp.784-789.   DOI
30 Sugita, T., Chiba, T., Kawamata, T., Ohnuma, M., Yoshizumi, Y. (2000) Assessment of Articular Cartilage of the Lateral Tibial Plateau in Varus Osteoarthritis of the Knee, The Knee, 7(4), pp.217-220.   DOI
31 Van Jonbergen, H.P.W., Innocenti, B., Gervasi, G.L., Labey, L., Verdonschot, N. (2012) Differences in the Stress Distribution in the Distal Femur Between Patellofemoral joint Replacement and Total Knee Replacement: A Finite Element Study, J. Orthop. Surg. & Res., 7(1), p.28.   DOI
32 Zhang, Y., Sun, M.J., Zhang, D. (2012) Designing Functionally Graded Materials with Superior Load-Bearing Properties, Acta Biomater., 8(3), pp.1101-1108.   DOI
33 Zhou, Y.S., Ohashi, M., Ikeuchi, K. (1997) Start up and Steady State Friction of Alumina Against Alumina, Wear, 210(1), pp.112-119.   DOI