• Title/Summary/Keyword: Joint Mechanism Design

Search Result 181, Processing Time 0.037 seconds

Design of a Modular Type Joint Mechanism for a Service Robot (서비스 로봇을 위한 모듈형 관절 메커니즘 설계)

  • Lee, Hee-Don;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.11
    • /
    • pp.1272-1278
    • /
    • 2011
  • Mechanisms of the robot system should be developed according to the task. In this study, we propose improving adaptability of the robot mechanism with the modularized joint mechanism. Adaptability is the measure of the system ability to cope with change or uncertainty. Modular type joint has been widely used in development of various robots including reconfigurable robots. To build robotic systems more flexibly and quickly with low costs of manufacturing and maintenance, we have designed a modular type joint with one degree of freedom for general purpose. This module is designed to be compact, light-weight and self-controlled. In this design, we consider the kinematics and dynamics properties of the modular type joint.

Mobility in the Contact Joint of a Mechanism (접촉 조인트에서의 운동자유도)

  • Lee, Jang-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.109-114
    • /
    • 2007
  • The mobility (degree of freedom) of mechanisms can be regarded as independent coordinate to define its position. This concept is essential for kinematics, and for designing mechanisms in the practical point of view. Gruebler's equation has been applied to estimate the mobility using number of links and joints of a mechanism. In practical case, there are many types of mechanisms, which transfer motion by direct contact between two links. However, no exact kinematic definition has existed for the joint that the contact takes place in a mechanism. In this paper, a new concept of contact joint is defined and modified Gruebler's equation is suggested to calculate mobility of a mechanism with the joint. This concept would be useful in mechanism design because it will be possible to manage many contact mechanisms with kinematic exactness.

Design of Compliant Hinge Joints inspired by Ligamentous Structure (인대 구조에 기인한 유연 경첩 관절의 설계)

  • Lee, Geon;Yoon, Dukchan;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.237-244
    • /
    • 2019
  • This paper suggests novel types of joint mechanisms composed of elastic strings and rigid bodies. All of the human hinge joints have the articular capsule and a pair of collateral ligaments. These fibrous tissues make the joint compliant and stable. The proposed mechanism closely imitates the human hinge joint structure by using the concept of tensegrity. The resultant mechanism has several characteristics shown commonly from both the tensegrity structure and the human joint such as compliance, stability, lightweight, and non-contact between rigid bodies. In addition, the role and feature of the human hinge joints vary according to the origins of a pair of collateral ligaments. Likewise, the locations of two strings corresponding to a pair of collateral ligaments produce different function and motion of the proposed mechanism. It would be one of the advantages obtained from the proposed mechanism. How to make a joint mechanism with different features is also suggested in this paper.

Design of a Variable-Stiffness Type Safety Joint for Service Robots (서비스 로봇용 가변강성 형 안전관절의 설계)

  • Jeong, Jae-Jin;Chang, Seung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.128-134
    • /
    • 2009
  • This paper aims to design a variable-stiffness type economical safety joint for service robots. The safety joint was designed to have a passive shock absorbing mechanism for protecting human from a catastrophic collision under service condition of robots. A simple mechanism composed of two action disks for switching the load transfer, a spring and a screw for pre-load was proposed. In order to evaluate the performance of the safety joint a testing platform which can carry out the static and impact tests was also designed and fabricated. From the test results, the designed safety joint was proved to have a variable load-carrying capacity and about 42% impact absorption capacity with simple manipulation of the control screw.

Design of coil spring to reduce influence of multiple clearances in planar four bar mechanism (이차원 4링크 기구의 다중 간극들의 영향을 줄이기 위한 코일 스프링의 설계)

  • 강동중;이학수;윤용산
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1446-1454
    • /
    • 1990
  • A systematic method of design modification to reduce the influence of impact from multiple clearances in a planar four bar mechanism is developed. For this purpose, an optimization method is used with the objective function which is the linear sum of the Earles and Wu criteria for every joints with clearances. One coil spring is attached to a joint of limited range of revolution to reduce the undesirable dynamic effects due to clearances at joints. The stiffness of the coil spring and its pre-loading angle are chosen as design variables. A numerical example is taken for a four bar mechanism. The initial and modified mechanisms are compared using a clearance mechanism analysis technic to see the difference in dynamic effects due to contact loss. It is found that the modified mechanism produces much more smooth joint contact forces than the original design.

Axially-loaded multiplanar tubular KTX-joints: numerical analysis

  • Zhang, Chenhui;Zou, Bo;Yang, Guotao
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.173-190
    • /
    • 2022
  • With the development of spatial structures, the joints are becoming more and more complex to connect tubular members of spatial structures. In this study, an approach is proposed to establish high-efficiency finite element model of multiplanar KTX-joint with the weld geometries accurately simulated. Ultimate bearing capacity the KTX-joint is determined by the criterion of deformation limit and failure mechanism of chord wall buckling is studied. Size effect of fillet weld on the joint ultimate bearing capacity is preliminarily investigated. Based on the validated finite element model, a parametric study is performed to investigate the effects of geometric and loading parameters of KT-plane brace members on ultimate bearing capacity of the KTX-joint. The effect mechanism is revealed and several design suggestions are proposed. Several simple reinforcement methods are adopted to constrain the chord wall buckling. It is concluded that the finite element model established by proposed approach is capable of simulating static behaviors of multiplanar KTX-joint; chord wall buckling with large indentation is the typical failure mode of multiplanar KTX-joint, which also increases chord wall displacements in the axis directions of brace members in orthogonal plane; ultimate bearing capacity of the KTX-joint increases approximately linearly with the increase of fillet weld size within the allowed range; the effect mechanism of geometric and loading parameters are revealed by the assumption of restraint region and interaction between adjacent KT-plane brace members; relatively large diameter ratio, small overlapping ratio and small included angle are suggested for the KTX-joint to achieve larger ultimate bearing capacity; the adopted simple reinforcement methods can effectively constrain the chord wall buckling with the design of KTX-joint converted into design of uniplanar KT-joint.