• Title/Summary/Keyword: Jet momentum

Search Result 195, Processing Time 0.023 seconds

A STUDY ABOUT FLOW CONTROL CHARACTERISTICS USING A SYNTHETIC JET (Synthetic Jet을 이용한 유동제어 특성연구)

  • Hong, Woo-Ram;Kim, Sang-Hoon;Kim, Woo-Re;Kim, Yu-Shin;Kim, Chong-Am
    • Journal of computational fluids engineering
    • /
    • v.12 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • To develop an aerodynamic performance, two groups of studies have been achieved widely. One is about the geometric design of vehicles and the other is about aerodynamic devices. Geometric design is a credible and stable method. However, it is not flexible and each part is related interactively. Therefore, if one part of geometry is modified, the other part will be required to redesign. On the other hand, the flow control by aerodynamic devices is flexible and modulized method. Even though it needs some energy, a relatively small amount of input makes more advanced aerodynamic performance. Synthetic jet is one of the method in the second group. The device repeats suctions and blowing motions in constant frequency. According to the performance, the adjacent flow to flight surface are served momentum. This mechanism can reduce the aerodynamic loss of boundary layer and separated flow. A synthetic jet actuator has several parameters, which influences the flow control. This study focuses on the parameter effects of synthetic jet - orifice geometry, frequency, jet speed and etc.

STUDY OF FLOW CONTROL CHARACTER USING SYNTHETIC JET (Synthetic jet을 이용한 유동제어 특성연구)

  • Hong, Woo-Ram;Kim, Sang-Hoon;Kim, Woo-Re;Kim, Yu-Shin;Kim, Chong-Am
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.72-78
    • /
    • 2007
  • To develop the aerodynamic performance, there are widely two group of studies are achieved. The first one is about design of the vehicles geometry and the second one is about aerodynamic devices. Geometry design is highly credible and stable method. But it is not flexible and each parts are related interactively. So if one part geometry are modified, the other parts are required to be redesigned. The other hand, flow control by aerodynamic device is flexible and modulized method. Though it needs energy, relatively little input makes far advanced aerodynamic performance. Synthetic Jet is one of the second group method. The device repeats suction and blowing motion in constant frequency. According to the performance, the flow which are near the flight surface are served momentum. This mechanism can reduce the aerodynamic loss by boundary layer and separated flow. Synthetic jet actuator has several parameters, that influence the flow control. This study focus the parameters effects of the synthetic jet - orifice geometry, frequency, jet speed and etc.

  • PDF

Flow behaviors of square jets surface discharged and submerged discharged into shallow water (천해역에 수표면 및 수중방류된 사각형제트의 흐름 거동)

  • Kim, Dae-Geun;Kim, Dong-Ok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.627-634
    • /
    • 2011
  • In the present study, the flow behaviors of square jets surface discharged and submerged discharged into shallow water were each simulated using computational fluid dynamics, and the results were compared. As for the verification of the models, the results of the hydraulic experiment conducted by Sankar, et al. (2009) were used. According to the results of the verification, the present application of computational fluid dynamics to the flow analysis of square jets discharged into shallow water was valid. As for the wall jet, which is one form of submerged discharges, at the bottom wall boundary, the peak velocity of the jet rapidly moved from the center of the jet to the bottom wall boundary due to the restriction of jet entrainment and the no-slip condition of the bottom wall boundary, and, as for the surface discharge, because jet entrainment is limited on the free water surface, the peak velocity of the jet moved from the center of the jet to the free water surface. This is because jet entrainment is restricted at the bottom wall boundary and the surface so that the momentum of the central core of the jet is preserved for considerable time at the bottom wall boundary and the surface. In addition, due to the effect of the bottom wall boundary and the free water surface, the jet discharged into shallow water had a smaller velocity diminution rate near the discharge outlet than did the free jet; at a location where it was so distant from the discharge outlet that the vertical profile of the velocity was nearly equal (b/x =20~30), moreover, it had a far smaller velocity diminution rate than did the free jet due to the effect of the finite depth.

Energy Efficient Design of a Jet Pump by Ensemble of Surrogates and Evolutionary Approach

  • Husain, Afzal;Sonawat, Arihant;Mohan, Sarath;Samad, Abdus
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.3
    • /
    • pp.265-276
    • /
    • 2016
  • Energy systems working coherently in different conditions may not have a specific design which can provide optimal performance. A system working for a longer period at lower efficiency implies higher energy consumption. In this effort, a methodology demonstrated by a jet pump design and optimization via numerical modeling for fluid dynamics and implementation of an evolutionary algorithm for the optimization shows a reduction in computational costs. The jet pump inherently has a low efficiency because of improper mixing of primary and secondary fluids, and multiple momentum and energy transfer phenomena associated with it. The high fidelity solutions were obtained through a validated numerical model to construct an approximate function through surrogate analysis. Pareto-optimal solutions for two objective functions, i.e., secondary fluid pressure head and primary fluid pressure-drop, were generated through a multi-objective genetic algorithm. For the jet pump geometry, a design space of several design variables was discretized using the Latin hypercube sampling method for the optimization. The performance analysis of the surrogate models shows that the combined surrogates perform better than a single surrogate and the optimized jet pump shows a higher performance. The approach can be implemented in other energy systems to find a better design.

Disintegration of Cryogenic Jet in Super-critical Environment (초임계 환경으로 분사되는 극저온 제트의 분열)

  • Lee, Keonwoong;Kim, Dohun;Koo, Jaye
    • Journal of ILASS-Korea
    • /
    • v.18 no.3
    • /
    • pp.140-145
    • /
    • 2013
  • Sub/supercritical spray experiments were conducted, and cryogenic nitrogen and gaseous argon were selected for simulants. liquid nitrogen and gaseous argon were injected in subcritical case, and supercritical nitrogen and near-critical gaseous argon were injected in near-critical/supercritical cases. shadowgraph method was used to visualize spray, and analyzed about the breakup length. The breakup length was measured from numbers of Instantaneous shadowgraph Images from each case, and they were compared with momentum flux ratios and density ratios. It was observed that the relation between breakup length and momentum flux ratio was fitted into former experiment results. and the reasonable constant was suggested about the relation between breakup length and density ratio.

Numerical Simulation Study on Gas-Particle Two-Phase Jets in a Crossflow (I) -Two-Phase Jet Trajectory and Momentum Transfer Mechanism- (고체입자가 부상된 자유 횡분류 유동에 대한 전산모사 연구 (I) -2상 분류궤적과 운동량 전달기구-)

  • 한기수;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.252-261
    • /
    • 1991
  • A particle trajectory model to simulate two-phase particle-laden crossjets into two-dimensional horizontal free stream has been developed to study the variations of the jet trajectories and velocity variations of the gaseous and the particulate phases. The following conclusions may be drawn from the predicted results, which are in agreement with experimental observations. The penetration of the two-phase jet in a crossflow is greater than that of the single-phase jet. The penetration of particles into the free stream increases with increasing particle size, solids-gas loading ratio and carrier gas to free stream velocity ratio at the jet exit. When the particle size is large, the solid particles separate from the carrier gas , while the particles are completely suspended in the carrier gas for the case of small size particles. As the particle to carrier gas velocity ratio at the jet exit is less than unity, the particles in the vicinity of the jet exit are accelerated by the carrier gas. As the injection angle is increased, the difference of the particle trajectory from that of the pure gas becomes larger. Therefore, it can be concluded that the velocities and trajectories of the particle-laden jets in a crossflow change depending on the solids-gas loading ratio, particle size, carrier gas to free stream velocity ratio and particle to gas velocity ratio at the jet exit.

Shore Attachement of Jet in Flowing Environment (흐름수역에서 ?흐름의 연안귀환)

  • Yoon, Tae Hoon;Yook, Woon Soo;Han, Woon Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4_1
    • /
    • pp.43-52
    • /
    • 1992
  • The shore attachment of jet in a cross flow is analysed by experiments and dimensional analysis. The jet flow is discharged with the same depth as that of the cross flow through a side channel perpendicular to the cross flow through a side channel perpendicular to the cross flow. For a momentum jet, nondimensional attachment length and height are dependent on nondimensional characteristic length $I_m/W$. For a buoyant jet, nondimensional attachment length is affected by $I_b/I_md$ and nondimensional temperature distribution is a function of $x/I_b$ and they all can be predicted as power laws. The shore attachment condition can be specified by velocity ratio R.

  • PDF

Study of Spray Droplet/Wall Interaction (분무액적과 벽의 상호작용에 대한 연구)

  • 양희천;유홍선;정연태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.86-100
    • /
    • 1998
  • The impingement of the fuel spray on the wall within the combustion chamber in compact high-pressure injection engines and on the intake port wall in port-fuel-inje- ction type engines is unavoidable. It is important to understand the characteristics of impinging spray because it influences on the rate of fuel evaporation and droplet distrib- ution etc. In this study, the numerical study for the characteristics of spray/wall interaction is performed to test the applicability and reliability of spray/wall impingement models. The impingement models used are stick model, reflect model, jet model and Watkins and Park's model. The head of wall-jet eminating radilly outward from the spray impingement site contains a vortex. Small droplets are deflected away from the wall by the stagnation flow field and the gas wall-jet flow. While the larger droplets with correspondingly higher momentum are impinged on the wall surface and them are moved along the wall and are rolled up by wall-jet vortex. Using the Watkins and Park's model the predicted results show the most reasonable trend. The rate of increase of spread and the height of the developing wall-spray is predicted to decrease with increased ambient pressure(gas density).

  • PDF

Laminar Lifted Methane Jet Flames in Co-flow Air

  • Sapkal, Narayan P.;Lee, Won June;Park, Jeong;Lee, Byeong Jun;Kwon, Oh Boong
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.83-86
    • /
    • 2015
  • The Laminar lifted methane jet flames diluted with helium and nitrogen in co-flow air have been investigated experimentally. The chemiluminescence intensities of $OH^{\ast}$ and $CH_2O^{\ast}$ radicals and the radius of curvature for tri-brachial flame were measured using an intensified charge coupled device (ICCD) camera, monochromator and digital video camera. The product of $OH^{\ast}$ and $CH_2O^{\ast}$ is used as a excellent proxy of heat release rate. These methane jet flames could be lifted in buoyancy and jet dominated regimes despite the Schmidt number less than unity. Lifted flames were stabilized due to buoyancy induced convection in buoyancy-dominated regime. It was confirmed that increased $OH^{\ast}$ and $CH_2O^{\ast}$ concentration caused an increase of edge flame speed via enhanced chemical reaction in buoyancy dominated regime. In jet momentum dominated regime lifted flames were observed even for nozzle exit velocities much higher than stoichiometric laminar flame speed. An increase in radius of curvature in addition to the increased $OH^{\ast}$ and $CH_2O^{\ast}$ concentration stabilizes such lifted flames.

  • PDF

Atomizing Characteristics of Coaxial Porous Injectors (다공성재를 이용한 동축형 분사기의 미립화특성)

  • Kim, Do-Hun;Shin, Jeung-Hwan;Lee, In-Chul;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.17 no.1
    • /
    • pp.35-44
    • /
    • 2012
  • To improve the mixing and atomizing performance at the center region of the conventional coaxial shear injector spray, the concept of a coaxial porous injector was invented. This novel injection concept for liquid rocket engines utilizes the Taylor-Culick flow in the cylindrical porous tube. The 2-dimensional injector, which can be converted in three injection configurations, was fabricated, and several cold flow tests using water-air simulant propellant was performed. The hydraulic characteristics and the effects of a gas flow condition on the spray pattern and the Sauter mean diameter (SMD) was analyzed for each configuration. The atomizing mechanism of coaxial porous injector was different with the coaxial shear injector, and it was explained by the momentum of the gas jet, which is injected normally against the center liquid column, and by the secondary disintegration at the wavy interface of liquid jet, which was generated at the recessed region. The SMD of 2D coaxial porous injector, which has higher gas momentum, was measured and it shows better atomizing performance at the center and outer side of spray than the 2D coaxial shear injector.