• Title/Summary/Keyword: Jerk-Cost

Search Result 15, Processing Time 0.021 seconds

Analysis of golf putting for Elite & Novice golfers Using Jerk Cost Function (저크비용함수를 이용한 골프 숙련자와 초보자간의 퍼팅 동작 분석)

  • Lim, Young-Tae;Choi, Jin-Sung;Han, Young-Min;Kim, Hyung-Sik;Yi, Jeong-Han;Jun, Jae-Hun;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • The purpose of this study was to identify critical parameters of a putting performance using jerk cost function. Jerk is the time rate of change of acceleration and it has been suggested that a skilled performance is characterized by decreased jerk magnitude. Four elite golfers($handicap{\leq}2$) and 4 novice golfers participated in this study for the comparison. The 3D kinematic data were collected for each subject performing 5 trials of putts for each of these distances (random order): 1m, 3m, 5m The putting stroke was divided into 3 phases such as back swing. down swing and follow-through. In this study, it was assumed that there exist smoothness difference between elite and novice golfers during putting. The distance and jerk-cost function of Putting stroke for each phase were analyzed Results showed that there was a significant difference in jerk cost function at putter toe (at media-lateral direction) and at the center of mass between two groups by increasing putting distance. From these it could be concluded that jerk can be used as a kinematic parameter for distinguishing elite and novice golfers.

Vibration Suppression Control for Mechanical Transfer Systems by Jerk Reduction

  • Hoshijima, Kohta;Ikeda, Masao
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.614-620
    • /
    • 2007
  • This paper considers vibration suppression of a mechanical transfer system, where the work is connected with the hand flexibly. We adopt the idea of jerk reduction of the hand. From the equation of motion, we first derive a state equation including the jerk and acceleration of the hand, but excluding the displacement and velocity of the work. Then, we design optimal state feedback for a suitable cost function, and show by simulation that jerk reduction of the hand is effective for vibration suppression of the work and improvement of the settling time. Since state feedback including the jerk and acceleration is not practical, we propose a computation method for optimal feedback using displacements and velocities in the state only.

The Analysis of Differences in Pulmonary Functions, Jerk Cost, and Ground Reaction Force Depending on Professional and Amateur Dancers in Korea Dance (한국무용 숙련자와 미숙련자에 따른 폐기능, 부드러움, 그리고 지면반력의 차이 분석)

  • Park, Yang-Sun;Kim, Mee-Yea;Lee, Sung-Ro
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.4
    • /
    • pp.349-357
    • /
    • 2014
  • The purpose of this study was to examine the differences in the performance of dancing motions depending on the level of skill by investigating pulmonary functions, ground reaction force, and jerk cost. The subjects of this study were 12 professional dancers (career: 16 yrs) and 12 amateur dancers (career: 9 yrs) who had similar physical conditions. We selected four motion phases which included the diagonal line motion, the deep flexion motion, the breath motion, and the turn motion with one leg after a small step walking motion, with Goodguri Jangdan. In the experiment, 6 infrared cameras were installed in order to analyze the value of the jerk costs and the force plate form. Finally, we measured the pulmonary functions of the subjects. For data analysis, independent t-tests according to each event, were carried out in the data processing. According to the results of FVC % Predicted, the professional dancers showed greater lung capacities than the amateur dancers, indicating that the level of dancing skill influences lung capacity. Based on the result of the balance test, the professional dancers used more vertical power than did the amateur dancers when performing maximal flexion motion. The professional dancers used a propulsive force of pushing their body forward by keeping the center of body higher while the amateur dancers used a braking power by keeping their bodies backward. When performing medial-lateral movements, the amateur dancers were less stable than the professional dancers. There were no differences in values of jerk costs between the amateur dancers and the professional dancers.

Does the Control of Breathing Help a Dancer to Perform a Smoother Ballet Pour de Bra? (호흡이 Ballet Pour de Bra 동작의 부드러움에 주는 영향)

  • Chung, Kui-In;Nam, Ki-Jeong
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.185-190
    • /
    • 2007
  • The purpose of this study was to investigate the effects that breathing, thoracic and abdominal, had on the smoothness while performing ballet pour de bra. Five skilled ballet dancers(age: $24{\pm}1$, height: $163.4{\pm}2.88$, weight: $44.4{\pm}1.34$) with experience of over 10 years participated in this study. Each participant performed the ballet movement three times with abdominal respiration and with thoracic respiration. The kinematic data was recorded at 60 Hz with three digital cameras (Sony VX-2100). The pour de bra movement consists of two phases, up and down. The up phase is defined as the movement from the en bas through the en avant to the en haut. The down phase is defined as the movement from the en haut through the $\grave{a}$ la seconde to the en bas. During these two phases the Jerk Cost (JC) factor was calculated for the shoulder, elbow and wrist to quantify the smoothness. The group who performed the movement while abdominal respiration had a lower JC factor and so it was concluded that while abdominal respiration the smoothness of the movement was increased as opposed to the thoracic respiration.

Differences of Smoothness and Coordination of the Fingers and Upper Extremities between Skilled and Non-skilled Players during Receiving the Basketball (농구 패스 리시브 시 숙련자와 비숙련자 간의 동작의 부드러움과 손가락 및 상지 협응의 차이)

  • Park, Sangheon;Lim, Hee Sung;Yoon, Sukhoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.2
    • /
    • pp.53-60
    • /
    • 2019
  • Objective: The purpose of this study was to investigate the differences of smoothness and coordination of the fingers and upper extremities between skilled and non-skilled players during receiving the basketball. Method: Ten male recreational basketball players (age: $23.2{\pm}2.7yrs.$, career: $8.6{\pm}1.6yrs.$, height: $177.3{\pm}6.0$, weight: $72.9{\pm}8.5kg$) careering over five years and ten non-skilled males (age: $27.3{\pm}1.5yrs.$, height: $173.7{\pm}5.6$, weight: $73.2{\pm}12.6kg$) were participated in this study. Then, participants were asked to perform basketball receiving movement for ten times. The receiving movements were recorded by eight infrared cameras (Oqus 300, Qualisys, Sweden). The collected rad data were calculated to duration of basketball receiving, Jerk-Cost, CRP and CRP variability. Results: The CRP of MCP-Wr, Wr-El in skilled group were greater than non-skilled group (p<.05). The CRP variability of El-Sh in non-skilled group was greater than skilled group (p<.05). Conclusion: These results suggest that skilled players perform more effective movement for impact absorption from the basketball. Moreover, the skilled players have consistent movement patterns during basketball performance. Lastly, it is important to train finger sensation and cognitive ability of thrown basketball from the passer.

Optimal Design of Power Loss for 3 Phase Voltage Source Inverter by using Thermal Management (써멀 메니지먼트(Thermal Management)에 의한 3상 전압형 인버터의 전력손실 최적화 설계)

  • Cho, S.E.;Park, S.J.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1757-1762
    • /
    • 2007
  • Recently, the demand for the low cost power conversion equipment is rapidly increased. To develop this three phase voltage source inverter, optimum power conversion equipment to system is designed. The optimum operation method to minimize the power loss also satisfy the life time of the power electronics that is request in the present industry. In this paper, the efficient operating method to change of the acceleration, jerk, and switching frequency in the interval of acceleration is selected to optimize the power loss and life time of the power electronics by using the elevator model. So, we proposed the method that 50[A] rating power electronics is adopted in 9[kW] load.

Optimal Variable Damping Control for a Robot Carrying an Object with a Human

  • Hideki, Hashimoto;Chung, W.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.25.3-25
    • /
    • 2001
  • This paper describes a control method of a robot cooperating with a human. A task in which a robot and a human move an object cooperatively is considered. To develop the force controller of the robot, the characteristics of human arm are investigated. The arm is forced to move along a trajectory in the experiment and the exerted force and the displacement are analyzed, It is found the force characteristics of the human arm is regarded as an optimal damper with minimizing a cost function. Then, the model is implemented to a robot and the cooperation of the robot and a human operator is examined. The effectiveness of the derived model is investigated and the experimental results show that the human moves the object supported by the robot with a minimum jerk trajectory.

  • PDF

Effects of Secondary Task on Driving Performance -Control of Vehicle and Analysis of Motion signal- (동시과제가 운전 수행 능력에 미치는 영향 -차량 통제 및 동작신호 해석을 중심으로-)

  • Mun, Kyung-Ryoul;Choi, Jin-Seung;Kang, Dong-Won;Bang, Yun-Hwan;Kim, Han-Soo;Lee, Su-Jung;Yang, Jae-Woong;Kim, Ji-Hye;Choi, Mi-Hyun;Ji, Doo-Hwan;Min, Byung-Chan;Chung, Soon-Cheol;Taek, Gye-Rae
    • Science of Emotion and Sensibility
    • /
    • v.13 no.4
    • /
    • pp.613-620
    • /
    • 2010
  • The purpose of this study was to quantitatively evaluate the effects of the secondary task while simulated driving using the variable indicating control of vehicle and smoothness of motion. Fifteen healthy adults having 1~2years driving experience were participated. 9 markers were attached on the subjects' upper(shoulder, elbow, Wrist) and lower(knee, ankle, toe) limbs and all subjects were instructed to keep the 30m distance with the front vehicle running at 80km/hr speed. Sending text message(STM) and searching navigation(SN) were selected as the secondary task. Experiment consisted of driving alone for 1 min and driving with secondary task for 1 min, and was defined driving and cognition blocks respectively. To indicate the effects of secondary task, coefficient of variation of distance between vehicles and lane keeping(APCV and MLCV) and jerk-cost function(JC) were analyzed. APCV was increased by 222.1% in SN block. MLCV was increased by 318.2% in STM and 308.4% in SN. JC were increased at the drivers' elbow, knee, ankle and toe, especially the total mean JC of lower limbs were increased by 218.2% in STM and 294.7% in SN. Conclusively, Performing secondary tasks while driving decreased the smoothness of motion with increased JC and disturbed the control of vehicle with increased APCV and MLCV.

  • PDF

Kinematics and Grip Forces of Professionals, Amateurs and Novices during Golf Putting (퍼팅 시 프로와 아마추어, 초보 골퍼사이의 운동학적 변인과 그립 악력 비교)

  • Choi, Jin-Seung;Kim, Hyung-Sik;Kang, Dong-Won;Kim, Han-Su;Oh, Ho-Sang;Seo, Jeong-Woo;Yi, Jeong-Han;Lim, Young-Tae;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.405-410
    • /
    • 2011
  • The purpose of this study was to compare the differences in kinematic variables and grip forces among professionals(PG), amateurs(AG), and novice group(NG) during golf putting. The participants consisted of 3 groups based on their playing ability: 8 professional golfers (handicap<5), 8 amateurs (handicap<18) and 8 novice. Each subject attempted 2.1m putts from the hole. 3D motion analysis system(Motion analysis Corp., USA) with 6 high speed cameras and grip force measurement system(Kim et al., 2007) were used to acquired kinematic and force data, respectively. To compare differences among groups, joint angles of upper limbs, trajectory and smoothness by jerk cost function(JC) of putter head and grip forces were used in this study. Results showed that there were significant differences among groups in most of variables such as joint angles, trajectory & smoothness of putter head, and distribution of grip force in both hands. In brief, we confirmed that putting stroke in PG was more accurate and smooth than that in other groups, especially NG, due to their well-controlled upper limbs and keeping grip forces constant in both hands. It can be concluded that due to skilled levels, fundamental differences of putting movement could be identified and these differences might be helpful for improving one's putting skills.

Development of Improved 5th Order Motion Profile for Low Vibration and High Speed (저진동, 고속특성을 가지는 개선된 5차 모션 프로파일의 설계)

  • So, Byeong-Kwan;Tae, Won-Hyeong;Kim, Jung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1110-1118
    • /
    • 2012
  • In this study, for reducing the residual vibration in high speed motion control stage, an improved 5th order polynomial motion profile was developed. When a stage is moving, the current through the motor coils has the same profile of input motion profile of acceleration, therefore the characteristics of the acceleration input profile directly affect on the performance of the amplifier that includes the current control loop. Commonly low cost amplifier and motor has a narrow current control bandwidth, therefore the proposed algorithm was designed based on this practical constraint. Simulation and experimental results showed that the proposed algorithm clearly has low residual vibration characteristics than conventional 5th order polynomial motion profile on the same drive condition.