• Title/Summary/Keyword: Jeju Water

Search Result 1,248, Processing Time 0.036 seconds

Effects of nutrient solution and artificial light on the growth and physicochemical properties of hydroponically cultivated barley (배양액과 인공광 처리가 수경재배 보리의 성장과 이화학적 특성에 미치는 영향)

  • Kim, Ju-Sung
    • Journal of Plant Biotechnology
    • /
    • v.48 no.2
    • /
    • pp.77-85
    • /
    • 2021
  • Hydroponic cultivation, in which crops are grown without soil and are unaffected by the weather, has many advantages over conventional soil cultivation. The crop's growth can be further accelerated by using nutrient solution in place of water. This study investigated the growth and physicochemical properties of hydroponic barley sprouts under various nutrient solution and artificial light treatments. The shoot, root, and total plant length increased over time, with the fastest growth occurring in the nutrient solution and light-emitting diode (LED) treatments. Fresh and dry plant weights were higher in the fluorescent lamp treatment than in the LED treatment. Barley sprout powder color differed slightly by treatment, with the Hunters L value ranging from 50.79 to 53.77; Hunters a value from -6.70 to -4.42; and Hunters b value from 13.35 to 14.76. The Hunters L and Hunters b values were highest in the LED treatment, whereas the Hunters a value was relatively highest in the fluorescent lamp treatment. The total phenol content was higher in the control than in the nutrient solution treatment; however, the total flavonoid content showed the opposite pattern to that of total phenol content, being highest in plants that were grown in nutrient solution. The Trolox equivalent antioxidant capacity (TEAC) was higher in the control group than in the nutrient solution group. The ferric ion reducing antioxidant power (FRAP) was higher in the fluorescent treatment group than in the LED treatment group. The total amino acid composition ranged from 106.82 to 122.63 mg/g dry powder, with the essential amino acid composition ranging from 47.01 to 56.19 mg/g, and non-essential amino acid composition from 67.86 to 77.66 mg/g. The most frequently detected compositional amino acid was aspartic acid, followed by glutamic acid, alanine, leucine, and valine.

Major environmental factors and traits of invasive alien plants determining their spatial distribution

  • Oh, Minwoo;Heo, Yoonjeong;Lee, Eun Ju;Lee, Hyohyemi
    • Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.277-286
    • /
    • 2021
  • Background: As trade increases, the influx of various alien species and their spread to new regions are prevalent and no longer a special problem. Anthropogenic activities and climate changes have made the distribution of alien species out of their native range common. As a result, alien species can be easily found anywhere, and they have nothing but only a few differences in intensity. The prevalent distribution of alien species adversely affects the ecosystem, and a strategic management plan must be established to control them effectively. To this end, hot spots and cold spots were analyzed according to the degree of distribution of invasive alien plants, and major environmental factors related to hot spots were found. We analyzed the 10,287 distribution points of 126 species of alien plants collected through the national survey of alien species by the hierarchical model of species communities (HMSC) framework. Results: The explanatory and fourfold cross-validation predictive power of the model were 0.91 and 0.75 as AUC values, respectively. The hot spots of invasive plants were found in the Seoul metropolitan area, Daegu metropolitan city, Chungcheongbuk-do Province, southwest shore, and Jeju island. Generally, the hot spots were found where the higher maximum temperature of summer, precipitation of winter, and road density are observed, but temperature seasonality, annual temperature range, precipitation of the summer, and distance to river and sea were negatively related to the hot spots. According to the model, the functional traits accounted for 55% of the variance explained by the environmental factors. The species with higher specific leaf areas were more found where temperature seasonality was low. Taller species preferred the bigger annual temperature range. The heavier seed mass was only preferred when the max temperature of summer exceeded 29 ℃. Conclusions: In this study, hot spots were places where 2.1 times more alien plants were distributed on average than non-hot spots (33.5 vs 15.7 species). The hot spots of invasive plants were expected to appear in less stressful climate conditions, such as low fluctuation of temperature and precipitation. Also, the disturbance by anthropogenic factors or water flow had positive influences on the hot spots. These results were consistent with the previous reports about the ruderal or competitive strategies of invasive plants instead of the stress-tolerant strategy. The functional traits are closely related to the ecological strategies of plants by shaping the response of species to various environmental filters, and our result confirmed this. Therefore, in order to effectively control alien plants, it is judged that the occurrence of disturbed sites in which alien plants can grow in large quantities is minimized, and the river management of waterfronts is required.

Growth and Yield Response of Perilla Plants Grown under Different Substrates in Hydroponic System (잎들깨 수경재배에서 배지 종류에 따른 식물 생육 및 수량의 반응)

  • Shin, Minju;Jeong, Ho Jeong;Roh, Mi Young;Kim, Jin Hyun;Song, Kwan Jeong
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.292-299
    • /
    • 2022
  • This study was conducted to analyze physical and chemical properties of horticultural substrates and response of hydroponically grown two cultivars of 'Namcheon' and 'Somirang' perilla by four different substrates: coir (chip:dust = 5:5), perlite, granular rockwool, and commercial mixed substrate (cocopeat:peatmoss:vermiculite:perlite: zeolite = 50:25:10:10:5). There were no significant differences in EC and pH according to substrates. Container capacity was the greatest in granular rockwool, and it showed appropriate levels in mixed substrate and coir. Air space was higher in coir and perlite than the other treatments. Bulky density reached a proper standard in all substrates excepting coir. The leaf length and width of 'Namcheon' indicated the most in mixed substrate, though the value of 'Somirang'was greatest in coir substrate. The leaf weight of both cultivars was highest in mixed substrate, and relatively low in coir and perlite. The total yield of leaves was separated by two groups: higher group, which are mixed substrate and granular rockwool, and lower group, which are coir and perlite. There was a large gap by 28% between these two groups. Therefore, this study suggests that substrates with high water holding capacity such as mixed substrate or granular rockwool are most suitable for the hydroponic cultivation of perilla, which require sufficient moisture supply to the root zone.

The Effect of Feeding with Sasa quelpaertensis Nakai Extract on Change in Economic Traits of the Pig (제주조릿대 (Sasa quelpaertensis Nakai) 추출물 급여가 돼지의 경제형질 특성 변화에 미치는 영향)

  • Hyeon Ah Kim;Sang Hwi Im;Ju Sung Kim;Mi Hyeon Park;Jong An Lee;Yong Jun Kang;In Cheol Cho;Moon Cheol Shin
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.4
    • /
    • pp.240-247
    • /
    • 2023
  • This experiment investigated the effects of feed additives of Sasa quelpaertensis Nakai (SQN) extract on Landrace pigs on economic traits such as the quality, physiological characteristics, and productivity. Sixteen pigs with an average age of 154 days were selected as experimental subjects. The experiment was conducted by dividing the group into eight pigs for the supplementation group, feeding with SQN extract, and another eight for the control group feeding without SQN extract. Water was fed ad libitum. On the 30th day, there was no significant difference between meat quality and productivity. However, the glucose and thyroxine were statistically lower with the supplementation group than with the control group (p<0.05). Also, the levels of creatinine difference between 1.18 ± 0.12 mg/㎗ with the supplementation group and 0.70 ± 0.06 mg/㎗ with the control group (p<0.05). However, all serum biochemistry values were within a normal range, with no health problems. The present study will help solve the problem of reducing the diversity of plant species in Halla Mountain by increasing the availability of the SQN as a pig feed additive.

The acclimatization of Haenyeo to a cold environment and occupational characteristics evaluated by orexin and irisin levels

  • Inho Lee;Yong-Jin Lee;Eun-Chul Jang;Soon-Chan Kwon;Young-Sun Min;Jisuk Yun;Taehwan Park;Hye-Jin Lee;Eonah Choo;Jeong-Beom Lee
    • Annals of Occupational and Environmental Medicine
    • /
    • v.34
    • /
    • pp.28.1-28.12
    • /
    • 2022
  • Background: Haenyeo is a woman who has the job of collecting seafood in the Jeju Sea at an average temperature of 13℃-14℃. The purpose of this study was to examine the cold acclimatization and occupational characteristics of Haenyeo through biomarkers such as orexin and irisin related to heat generation in the body. Methods: Twenty-one Haenyeo and 25 people with similar age, body type, and body mass index were selected as the control group (Control G). In the cold exposure experiment, a climate chamber was set to 5℃ and both feet were immersed in a 15℃ water tank for 30 minutes. Tympanic temperature (Tty) and skin temperature (Tsk) were measured, and the mean body temperature (mTb) was calculated. Blood samples were collected before and immediately after the examination. Orexin and irisin levels were analyzed. Results: Orexin levels were elevated after cold stimulation from 12.17 ± 4.44 to 12.95 ± 4.53 ng/mL (Haenyeo group [Haenyeo G], p < 0.01) and 10.37 ± 3.84 to 11.25 ± 4.02 ng/mL (Control G, p < 0.001). Irisin levels were elevated after cold stimulation from 4.83 ± 2.28 to 5.36 ± 2.23 ng/mL (Haenyeo G, p < 0.001) and 3.73 ± 1.59 to 4.18 ± 2.04 ng/mL (Control G, p < 0.001). The difference between Haenyeo G and Control G values in orexin and irisin appears not only in pre-exposure but also in post-exposure (p < 0.05). Conclusions: Our experimental results suggest that Haenyeo G were relatively superior in cold tolerance to Control G under cold exposure conditions. Haenyeo's cold acclimatization is due to the basic differences in pyrogens regarding body temperature control such as orexin and irisin. This means that Haenyeo are advantageous for cold survival.

Effects of Size and Environmental Condition on Burrowing of Artificial Seedling of Ark Shell, Scapharca broughtonii (Schrenck) (피조개, Scapharca broughtonii (Schrenck) 인공치패의 크기 및 환경조건이 잠입에 미치는 영향)

  • Kim, Byeong-Hak;Shin, Yun-Kyung;Choi, Nack-Joong;Oh, Bong-Se;Sohn, Sang-Gyu;Jung, Choon-Goo;Son, Tai-Sun;Kang, Kyoung-Ho
    • The Korean Journal of Malacology
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • The influence of individual size, sediment, gain size, water temperature, salinity and air exposure on burrowing rate was investigated in order to obtain the basic biological data on applying shellfish farm for a sustainable production of ark shell, Scapharca broughtonii (Schrenk). The burrowing rate on individual size 300 minutes after starting the experiment was the highest in the shell length $16.3\;{\pm}\;1.2\;mm$, 97.7%. The highest burrowing rates were 97.0% in $12.8\;{\pm}\;0.8\;mm$, 96.7% in $9.2\;{\pm}\;1.0\;mm$, and 96.3% in $5.9\;{\pm}\;0.7\;mm$. The clams over 6 mm of shell length had burrowing ability and the burrowing rate was not related to the shell size. The burrowing rate depending on the kind of grain at the bottom after 300 minutes was the highest, 98.3%, in the mixture of sand and silt with a ratio of 75:25. The rates were 98% in silt (100%), 97.3% in mixture sand and silt with a ratio of 50:50, 97.3% in sand and silt ratio of 25:75, and 86.3% in sand (100%) in this specific order. On grain size of the soil in the seafloor, the burrowing rates after 300 minutes was at its highest in the group of sand in pore size 1 mm with 85.0%, and the $12\;{\mu}m$ to 1 mm in the grain size was fitted to burrowing of artificial seed. In the case of water temperature, the burrowing rates were at its highest after 300 minutes. In $30^{\circ}C$ group, the rate was 96.7% and in $25^{\circ}C$ and $20^{\circ}C$, 90.0%. The rates decreased as the water temperature decreased below $15^{\circ}C$. The burrowing rates on salinity were the highest in 30 psu with 93.3% and at 15 psu and below, there was no noticeable change in the burrowing rate. On air exposure, the burrowing rates after 300 minutes were the highest in 1 hour with 93.3%, and remarkably decreased as air exposure time is longer after 12 hours of air exposure.

  • PDF

Novel Species Candidates Belonging to the Phyla Bacteroidetes, Firmicutes, and Actinobacteria Isolated from the Halla Mountain Wetlands (제주도 고산 습지에서 분리한 Bacteroidetes, Firmicutes, Actinobacteria 문에 속하는 신종후보 세균)

  • Choi, Ah-Young;Choi, Jae-Hee;Kang, Ji-Young;Choe, Jeong-Uk;Lee, Sang-Hoon;Kim, Ha-Neul;Yi, Ha-Na;Shin, Young-Min;Jahng, Kwang-Yeop;Lee, Hyune-Hwan;Kim, Kyu-Joong;Joh, Ki-Seong;Chun, Jong-Sik;Kim, Seung-Bum;Cho, Jang-Cheon
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.3
    • /
    • pp.126-137
    • /
    • 2011
  • Although Sumunmulbangdui wetland at the Halla Mountain in Jeju Island, a kind of montane wetlands, has been considered to bear high biodiversity, no study has been reported on the bacterial diversity. In this study, soil and water samples were collected from the wetland in order to isolate novel bacterial species. Bacterial strains belonging to the phyla Bacteroidetes, Firmicutes, and Actinobacteria were isolated after spreading soil and water samples onto solid agar media. The 16S rRNA gene sequences of the strains assigned to the three phyla were compared to those of type strains of the species in the phyla. The strains that showed less than 98.7% 16S rRNA gene sequence similarity to the validly published species were considered to be novel species candidates. A total of 32 strains were regarded as novel species candidates in the phyla Bacteroidetes, Firmicutes, and Actinobacteria. Diversity of novel species candidates was very low; the candidates were confined to only few genera. In the Bacteroidetes, 13 novel candidate species were affiliated with the genera Mucilaginibacter, Sphingobacterium, Pedobacter, Flavobacterium, and Chryseobacterium. A total of 13 novel candidate species that assigned to the genera Paenibacillus Lysinibacillus, and Bacillus were identified in the phylum Firmicutes. Only two candidate species that belonged to the genera Mycobacterium and Nocardia were excavated in the Actinobacteria. Cultural, physiological, and chemotaxonomic characteristics have been determined for the novel species candidates, and the characteristics are described in this study.

A Study on derivation of drought severity-duration-frequency curve through a non-stationary frequency analysis (비정상성 가뭄빈도 해석 기법에 따른 가뭄 심도-지속기간-재현기간 곡선 유도에 관한 연구)

  • Jeong, Minsu;Park, Seo-Yeon;Jang, Ho-Won;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.2
    • /
    • pp.107-119
    • /
    • 2020
  • This study analyzed past drought characteristics based on the observed rainfall data and performed a long-term outlook for future extreme droughts using Representative Concentration Pathways 8.5 (RCP 8.5) climate change scenarios. Standardized Precipitation Index (SPI) used duration of 1, 3, 6, 9 and 12 months, a meteorological drought index, was applied for quantitative drought analysis. A single long-term time series was constructed by combining daily rainfall observation data and RCP scenario. The constructed data was used as SPI input factors for each different duration. For the analysis of meteorological drought observed relatively long-term since 1954 in Korea, 12 rainfall stations were selected and applied 10 general circulation models (GCM) at the same point. In order to analyze drought characteristics according to climate change, trend analysis and clustering were performed. For non-stationary frequency analysis using sampling technique, we adopted the technique DEMC that combines Bayesian-based differential evolution ("DE") and Markov chain Monte Carlo ("MCMC"). A non-stationary drought frequency analysis was used to derive Severity-Duration-Frequency (SDF) curves for the 12 locations. A quantitative outlook for future droughts was carried out by deriving SDF curves with long-term hydrologic data assuming non-stationarity, and by quantitatively identifying potential drought risks. As a result of performing cluster analysis to identify the spatial characteristics, it was analyzed that there is a high risk of drought in the future in Jeonju, Gwangju, Yeosun, Mokpo, and Chupyeongryeong except Jeju corresponding to Zone 1-2, 2, and 3-2. They could be efficiently utilized in future drought management policies.

Anti-Inflammatory and Moisturizing Effect of Centella Extracts Fermented in Jeju Lava Water (제주용암해수로 숙성된 병풀 추출물의 항염 및 보습 효과)

  • Lee, Jeesun;Myung, Cheol Hwan;Lee, Ji Eun;Jo, Mi-Rae;Kim, Hong-Suk;Lee, Na-Young;Woo, Heedong;You, Jaeeun;Jo, Hae;Hwang, Jae Sung
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.4
    • /
    • pp.363-372
    • /
    • 2019
  • The leaves and stems of Centella asiatica have a long history of their usage as a medicine for the treatment of skin diseases such as ulcers and psoriasis, especially in Asia. Triterpenoids, the active components of Centella asiatica including asiaticoside, madecasosside, asiatic acid and madecassic acid, have shown to inhibit skin inflammation as well as improve skin photoaging. The main objective of this study is to investigate whether the Centella asiatica ripened with lava seawater which is rich in minerals known to be beneficial to human body can provide anti-inflammatory and moisturizing effects to skin. HPLC analysis showed that the concentration of triterpenoids increased further after ripening Centella asiatica with lava seawater. In order to confirm the inflammatory efficacy of the extract of the extract of the ripened Centella asiatica, the production of NO in LPS-activated RAW 264.7 cells and the expression of inflammatory cytokines in PM10 or UVB-induced HaCaT cells were observed. We found that the extract of the ripened Centella asiatica inhibited the expression of NO, IL-6, IL-8, and TNF-a and had higher inhibitory effect compared to the extract of the non-ripened Centella asiatica. In order to confirm the skin moisturizing effect, we investigated the synthesis of HA in HaCaT cells. The result showed HA production was enhanced in a concentration-dependent manner from the ripened group, while there was no efficacy from the non-ripened group. Taken together, it is concluded that the extract of the Centella asiatica ripened with lava seawater was effective in anti-inflammation and moisturization.

Growth, Photosynthesis and Chlorophyll Fluorescence of Chinese Cabbage in Response to High Temperature (고온 스트레스에 대한 배추의 생장과 광합성 및 엽록소형광 반응)

  • Oh, Soonja;Moon, Kyung Hwan;Son, In-Chang;Song, Eun Young;Moon, Young Eel;Koh, Seok Chan
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.318-329
    • /
    • 2014
  • In order to gain insight into the physiological responses of plants to high temperature stress, the effects of temperature on Chinese cabbage (Brassica campestris subsp. napus var. pekinensis cv. Detong) were investigated through analyses of photosynthesis and chlorophyll fluorescence under 3 different temperatures in the temperature gradient tunnel. Growth (leaf length and number of leaves) during the rosette stage was greater at ambient $+4^{\circ}C$ and ambient $+7^{\circ}C$ temperatures than at ambient temperature. Photosynthetic $CO_2$ fixation rates of Chinese cabbage grown under the different temperatures did not differ significantly. However, dark respiration rate was significantly higher in the cabbage that developed under ambient temperature relative to elevated temperature. Furthermore, elevated growth temperature increased transpiration rate and stomatal conductance resulting in an overall decrease of water use efficiency. The chlorophyll a fluorescence transient was also considerably affected by high temperature stress; the fluorescence yield $F_J$, $F_I$, and $F_P$ decreased considerably at ambient $+4^{\circ}C$ and ambient $+7^{\circ}C$ temperatures, with induction of $F_K$ and decrease of $F_V/F_O$. The values of RC/CS, ABS/CS, TRo/CS, and ETo/CS decreased considerably, while DIo/CS increased with increased growth temperature. The symptoms of soft-rot disease were observed in the inner part of the cabbage heads after 7, 9, and/or 10 weeks of cultivation at ambient $+4^{\circ}C$ and ambient $+7^{\circ}C$ temperatures, but not in the cabbage heads growing at ambient temperature. These results show that Chinese cabbage could be negatively affected by high temperature under a future climate change scenario. Therefore, to maintain the high productivity and quality of Chinese cabbage, it may be necessary to develop new high temperature tolerant cultivars or to markedly improve cropping systems. In addition, it would be possible to use the non-invasive fluorescence parameters $F_O$, $F_V/F_M$, and $F_V/F_O$, as well as $F_K$, $M_O$, $S_M$, RC/CS, ETo/CS, $PI_{abs}$, and $SFI_{abs}$ (which were selected in this study), to quantitatively determine the physiological status of plants in response to high temperature stresses.