DOI QR코드

DOI QR Code

A Study on derivation of drought severity-duration-frequency curve through a non-stationary frequency analysis

비정상성 가뭄빈도 해석 기법에 따른 가뭄 심도-지속기간-재현기간 곡선 유도에 관한 연구

  • Received : 2019.11.25
  • Accepted : 2020.01.03
  • Published : 2020.02.29

Abstract

This study analyzed past drought characteristics based on the observed rainfall data and performed a long-term outlook for future extreme droughts using Representative Concentration Pathways 8.5 (RCP 8.5) climate change scenarios. Standardized Precipitation Index (SPI) used duration of 1, 3, 6, 9 and 12 months, a meteorological drought index, was applied for quantitative drought analysis. A single long-term time series was constructed by combining daily rainfall observation data and RCP scenario. The constructed data was used as SPI input factors for each different duration. For the analysis of meteorological drought observed relatively long-term since 1954 in Korea, 12 rainfall stations were selected and applied 10 general circulation models (GCM) at the same point. In order to analyze drought characteristics according to climate change, trend analysis and clustering were performed. For non-stationary frequency analysis using sampling technique, we adopted the technique DEMC that combines Bayesian-based differential evolution ("DE") and Markov chain Monte Carlo ("MCMC"). A non-stationary drought frequency analysis was used to derive Severity-Duration-Frequency (SDF) curves for the 12 locations. A quantitative outlook for future droughts was carried out by deriving SDF curves with long-term hydrologic data assuming non-stationarity, and by quantitatively identifying potential drought risks. As a result of performing cluster analysis to identify the spatial characteristics, it was analyzed that there is a high risk of drought in the future in Jeonju, Gwangju, Yeosun, Mokpo, and Chupyeongryeong except Jeju corresponding to Zone 1-2, 2, and 3-2. They could be efficiently utilized in future drought management policies.

본 연구는 한반도의 관측 강우자료를 기반으로 하여 과거의 가뭄 특성을 파악함과 동시에 RCP 8.5 기후변화 시나리오를 활용한 장래 발생 가능한 극치 가뭄에 대한 장기전망을 수행하였다. 정량적인 가뭄 분석을 위해 기상학적 가뭄지수인 표준강수지수(Standardized Precipitation Index, SPI)를 적용하였으며 일단위 강우 관측 자료 및 RCP 시나리오를 단일한 장기 시계열 자료로 구축하여 1, 3, 6, 9, 12개월 지속기간의 SPI 입력인자로 활용하였다. 한반도의 지역별 가뭄특성 분석을 위한 대상 강우관측소는 1954년 시점부터 강우 자료를 보유하고 있는 12개 관측 지점을 선정하였으며, 동일 지점의 10개 GCM(General Circulation Model)을 적용하였다. 기후변화에 따른 가뭄 특성 변화 분석을 위해 강우발생일수와 총강수량에 대한 12개 강우관측소별 추세 변동 분석 및 군집화를 수행하였다. 샘플링 기법을 활용한 비정상성 빈도분석을 위해 베이지안 기반의 DE(Differential Evolution)와 MCMC(Markov Chain Monte Carlo)를 결합한 DEMC 기법을 채택하였고, 비정상성 가뭄빈도해석을 통하여 12개 지점별 SDF(Severity-Duration-Frequency) 곡선을 유도하였다. 비정상성을 가정한 장기 수문자료를 보유한 지점들의 SDF 곡선 산정을 통해 미래의 가뭄에 대한 정량적인 전망을 수행하였다. 장기시계열 자료를 보유한 12개 지점의 군집분석을 수행한 결과 Zone 1-2, 2, 3-2에 해당하는 제주를 제외한 전주, 광주, 여순, 목포, 추풍령 등에서 장래에 가뭄발생 위험이 높은 것으로 분석되었다. 장래 발생 가능한 가뭄 위험성을 정량적으로 파악함으로써 미래 가뭄관리 정책에 충분히 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Ashrit, R.G., Kitoh, A., and Yukimoto, S. (2005). "Transient response of ENSO-monsoon teleconnection in MRICGCM2 climate change simulations." Journal of the Meteorological Society of Japan, Vol. 83, pp. 273-291. https://doi.org/10.2151/jmsj.83.273
  2. Dalezios, N.R., Loukas, A., Vasiliades, L., and Liakopoulos, E. (2000). "Severity-duration-frequency analysis of droughts and wet periods in Greece." Hydrological sciences journal, Vol. 45, No. 5, pp. 751-769. https://doi.org/10.1080/02626660009492375
  3. Dubrovsky, M., Hayes, M., Duce, P., Trnka, M., Svoboda, M., and Zara, P. (2014). "Multi-GCM projections of future drought and climate variability indicators for the Mediterranean region." Regional Environmental Change, Vol. 14, No. 5, pp. 1907-1919. https://doi.org/10.1007/s10113-013-0562-z
  4. Eum, H.I., and Cannon, A.J. (2017). "Intercomparison of projected changes in climate extremes for South Korea: application of trend preserving statistical downscaling methods to the CMIP5 ensemble." International Journal of Climatology, Vol. 37, pp. 3381-3397. https://doi.org/10.1002/joc.4924
  5. Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2003). Bayesian data analysis. 2nd edition, Chapman & Hall, London.
  6. Gelman, A., and Shirley, K. (2011). "Inference from simulations and monitoring convergence." Handbook of markov chain monte carlo, Edited by Gelman, A., Jones, G., and Meng, X.L. Vol. 6, CRC press, U.S., pp. 163-174.
  7. Gumbel, E.J. (1958). "Statistics of extremes". Columbia University Press, N.Y., U.S.
  8. Hong, H.P., Park, S.Y., Kim., T.W., and Lee, J.H. (2018). "Assessment of CMIP5 GCMs for future extreme drought analysis." Journal of Korea Water Resource Association, Vol. 51, pp. 617-627. https://doi.org/10.3741/JKWRA.2018.51.7.617
  9. Intergovernmental Panel on Climate Change (IPCC) (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panle on Climate Change. Cambridge University Press, N.Y., U.S.
  10. Janga Reddy, M., and Ganguli, P. (2013). "Spatio-temporal analysis and deriviation of copula-based intensity-area-frequency curves for droughts in western rajasthan (India)." Stochastic environmental research and risk assessment, Vol. 27, pp. 1975-1989. https://doi.org/10.1007/s00477-013-0732-z
  11. Jeong, M.S., Yoon, S.K., Park, S.Y., Jung, J,W., and Lee, J.H. (2018). "Non-stationary frequency analysis of future extreme rainfall using CMIP5 GCMs over the Korean peninsula." Journal of Korean Society Hazard Mitigation, Vol. 18, No. 3, pp. 73-86. https://doi.org/10.9798/kosham.2018.18.3.73
  12. Jung, T.H., Kim, H.B., Kim, H.S., and Heo, J.H. (2019). "Selection of climate indices for nonstationary frequency analysis and estimation of rainfall quantile." Journal of the Korean Society of Civil Engineers, Vol. 39, No. 1, pp. 165-174. https://doi.org/10.12652/KSCE.2019.39.1.0165
  13. Katz, R.W. (2013). "Statistical methods for nonstationary extremes." Extremes in a Changing Climate, Edited by A., AghaKouchack, D. Easterling, K. Hsu, S. Schubert, and S. Sorooshian, Vol. 65, Springer, Dordrecht, Netherlands.
  14. Kim, C.J., Park, M.J., and Lee, J.H. (2014). "Analysis of climate change impacts on the spatial and frequency patterns of drought using a potential drought hazard mapping approach." International Journal of Climatology, Vol. 34, pp. 61-80. https://doi.org/10.1002/joc.3666
  15. Leadbetter, M.R., Lindgren, G., and Rootzen, H. (1983). Extremes and related properties of random sequences and processes. Springer Science & Business Media, Springer, N.Y., U.S.
  16. Lee, J.H., Jang, H.W., Kim, J.S., and Kim, T.W. (2015). "Quantitative characterization of historical drought events in Korea." Journal of Korea Water Resource Association, Vol. 48, No. 12, pp. 1011-1021. https://doi.org/10.3741/JKWRA.2015.48.12.1011
  17. Lee, J.H., Kwon, H.H., Jang, H.W., and Kim, T.W. (2016a). "Future changes in drought characteristics under extreme climate change over South Korea." Advances in Meteorology, Vol. 2016, Article ID 9164265, pp. 19.
  18. Lee, J.J., Kwon, H.H., and Kim, T.W. (2010). "Concept of trend analysis of hydrologic extreme variables and nonstationary frequency analysis." Journal of the Korean Society of Civil Engineers, Vol. 30, No. 4B, pp. 389-397.
  19. Lee, O.J., Park, M.W., Lee, J.H., and Kim, S.D. (2016b). "Future PMPs projection according to precipitation variation under RCP 8.5 climate change scenario." Journal of Korea Water Resources Association, Vol. 49, No. 2, pp. 107-119. https://doi.org/10.3741/JKWRA.2016.49.2.107
  20. Lee, S.E., and Zhang, B.T. (2002). "A bayesian evolutionary algorithm with multiple markov chains." Journal of Computing Science and Engineering, Korean Insitute Of Information Scientists And Engineers, Vol. 29, No. 1B, pp. 322-324.
  21. Mckee, T.B., Doesken, N.J., and Kleist, J. (1995). "Drought monitering with multiple time scales preprints." 9th Conference on Applied Climatology, Dallas, T.X., U.S., pp. 233-236.
  22. McMahon, T.A., Peel, M.C., and Karoly, D.J. (2015). "Assessment of precipitation and temperature data from CMIP3 global climate models for hydrologic simulation." Hydrology and Earth System Sciences, Vol. 19, No. 1, pp. 361-377. https://doi.org/10.5194/hess-19-361-2015
  23. Meehl, G.A., and Arblaster, J.M. (2003). "Mechanisms for projected future changes in South Asian monsoon precipitation." Climate Dynamics, Vol. 21, pp. 659-675. https://doi.org/10.1007/s00382-003-0343-3
  24. Milly, P.C.D., Betancourt, J., Falkenmark, M., Hirsch, R.M., Kundzewicz, Z.W., Lettenmaier, D.P., and Stouffer, R.J. (2008). "Stationarity is dead: whither water management?" Science, Vol. 319, pp. 573-574. https://doi.org/10.1126/science.1151915
  25. Park, M.W., Sim, H.J., Park, Y.K., and Kim, S.D. (2015). "Drought severity-duration-frequency analysis based on KMA 1-km resolution RCP scenario." Journal of Korean Society Hazard Mitigation, Vol. 15, No. 3, pp. 347-355. https://doi.org/10.9798/KOSHAM.2015.15.3.347
  26. Renard, B., Sun, X., and Lang, M. (2013). "Bayesian methods for non-stationary extreme value analysis." Extremes in a Changing Climate, Springer, Dordrecht, Netherlands.
  27. Sherri, M., Boulkaibet, I., Marwala, T., and Friswell, M. (2017). "A differential evaluation markov chain monte carlo algorithm for bayesian model updating." arXiv preprint arXiv:1710.09486.
  28. Storn, R., and Price, K. (1997). "Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces." Journal of Global Optimization, Vol. 11, No. 4, pp. 341-359. https://doi.org/10.1023/A:1008202821328
  29. Vrugt, J.A., Ter Braak, C.J.F., Diks, C.G.H., Robinson, B.A., Hyman, J.M., and Higdon, D. (2009). "Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling." International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 10, No. 3, pp. 273-290. https://doi.org/10.1515/ijnsns.2009.10.3.273
  30. Waagepetersen, R., and Sorensen, D. (2001). "A tutorial on reversible jump MCMC with a view toward applications in QTL-mapping." International Statistical Review, Vol. 69, pp. 49-61. https://doi.org/10.1111/j.1751-5823.2001.tb00479.x
  31. Yoon, S.K., and Cho, J.P. (2015). "The uncertainty of extreme rainfall in the near future and its frequency analysis over the korean peninsula using CMIP5 GCMs." Journal of Korea Water Resources Association, Vol. 48, No. 10, pp. 817-830. https://doi.org/10.3741/JKWRA.2015.48.10.817
  32. Yoon, S.K., Jang, S.M., Rhee, J.Y., and Cho, J.P. (2017). "Analysis of future extreme rainfall under climate change over the landslide risk zone in urban areas." Journal of Korean society Hazard Mitigation, Vol. 17, No. 5, pp. 355-367. https://doi.org/10.9798/KOSHAM.2017.17.5.355