• Title/Summary/Keyword: Jacobi polynomials

Search Result 35, Processing Time 0.026 seconds

On Finite Integrals Involving Jacobi Polynomials and the $\bar{H}$-function

  • Sharma, Rajendra P.
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.3
    • /
    • pp.307-313
    • /
    • 2006
  • In this paper, we first establish an interesting new finite integral whose integrand involves the product of a general class of polynomials introduced by Srivastava [13] and the generalized H-function ([9], [10]) having general argument. Next, we present five special cases of our main integral which are also quite general in nature and of interest by themselves. The first three integrals involve the product of $\bar{H}$-function with Jacobi polynomial, the product of two Jacobi polynomials and the product of two general binomial factors respectively. The fourth integral involves product of Jacobi polynomial and well known Fox's H-function and the last integral involves product of a Jacobi polynomial and 'g' function connected with a certain class of Feynman integral which may have practical applications.

  • PDF

INEQUALITIES FOR JACOBI POLYNOMIALS

  • Pyung, In Soo;Kim, Hae Gyu
    • Korean Journal of Mathematics
    • /
    • v.12 no.1
    • /
    • pp.67-75
    • /
    • 2004
  • Paul Turan observed that the Legendre polynomials satisfy the inequality $P_n(x)^2-P_{n-1}(x)P_{n+1}(x)$ > 0, $-1{\leq}x{\leq}1$. And G. Gasper(ref. [6], ref. [7]) proved such an inequality for Jacobi polynomials and J. Bustoz and N. Savage (ref. [2]) proved $P^{\alpha}_n(x)P^{\beta}_{n+1}(x)-P^{\alpha}_{n+1}(x)P{\beta}_n(x)$ > 0, $\frac{1}{2}{\leq}{\alpha}$ < ${\beta}{\leq}{\alpha}+2.0$ < $x$ < 1, for the ultraspherical polynomials (respectively, Laguerre ploynomials). The Bustoz-Savage inequalities hold for Laguerre and ultraspherical polynomials which are symmetric. In this paper, we prove some similar inequalities for non-symmetric Jacobi polynomials.

  • PDF

INTEGRALS INVOLVING LAGUERRE, JACOBI AND HERMITE POLYNOMIALS

  • Nath, B.
    • Kyungpook Mathematical Journal
    • /
    • v.12 no.1
    • /
    • pp.115-117
    • /
    • 1972
  • The purpose of the present paper is to evaluate certain integrals involving Laguerre, Jacobi and Hermite polynomials. These integrals are very useful in case of expansion of any polynomial in a series of Orthogonal polynomials [1, Theo. 56].

  • PDF

GENERATION OF SIMPLEX POLYNOMIALS

  • LEE JEONG KEUN
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.797-802
    • /
    • 2005
  • We generate simplex polynomials by using a method, which produces an OPS in (d + 1) variables from an OPS in d variables and the Jacobi polynomials. Also we obtain a partial differential equation of the form $${\Sigma}_{i,j=1}^{d+1}\;A_ij{\frac{{\partial}^2u}{{\partial}x_i{\partial}x_j}}+{\Sigma}_{i=1}^{d+1}\;B_iu\;=\;{\lambda}u$$, which has simplex polynomials as solutions, where ${\lambda}$ is the eigenvalue parameter.

A FAMILY OF NEW RECURRENCE RELATIONS FOR THE JACOBI POLYNOMIALS Pn(α,β)(x)

  • Shine, Raj S.N.;Choi, Junesang;Rathie, Arjun K.
    • Honam Mathematical Journal
    • /
    • v.40 no.1
    • /
    • pp.163-186
    • /
    • 2018
  • The objective of this paper is to present 87 recurrence relations for the Jacobi polynomials $P_n^{({\alpha},{\beta})}(x)$. The results presented here most of which are presumably new are obtained with the help of Gauss's fifteen contiguous function relations and some other identities recently recorded in the literature.

JACOBI DISCRETE APPROXIMATION FOR SOLVING OPTIMAL CONTROL PROBLEMS

  • El-Kady, Mamdouh
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.1
    • /
    • pp.99-112
    • /
    • 2012
  • This paper attempts to present a numerical method for solving optimal control problems. The method is based upon constructing the n-th degree Jacobi polynomials to approximate the control vector and use differentiation matrix to approximate derivative term in the state system. The system dynamics are then converted into system of algebraic equations and hence the optimal control problem is reduced to constrained optimization problem. Numerical examples illustrate the robustness, accuracy and efficiency of the proposed method.

SOME COMPOSITION FORMULAS OF JACOBI TYPE ORTHOGONAL POLYNOMIALS

  • Malik, Pradeep;Mondal, Saiful R.
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.677-688
    • /
    • 2017
  • The composition of Jacobi type finite classes of the classical orthogonal polynomials with two generalized Riemann-Liouville fractional derivatives are considered. The outcomes are expressed in terms of generalized Wright function or generalized hypergeometric function. Similar composition formulas are also obtained by considering the generalized Riemann-Liouville and $Erd{\acute{e}}yi-Kober$ fractional integral operators.

SOME FINITE INTEGRALS INVOLVING THE PRODUCT OF BESSEL FUNCTION WITH JACOBI AND LAGUERRE POLYNOMIALS

  • Ghayasuddin, Mohd;Khan, Nabiullah;Khan, Shorab Wali
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.1013-1024
    • /
    • 2018
  • The main object of this paper is to set up two (conceivably) valuable double integrals including the multiplication of Bessel function with Jacobi and Laguerre polynomials, which are given in terms of Srivastava and Daoust functions. By virtue of the most broad nature of the function included therein, our primary findings are equipped for yielding an extensive number of (presumably new) fascinating and helpful results involving orthogonal polynomials, Whittaker functions, sine and cosine functions.

SOME RECURRENCE RELATIONS FOR THE JACOBI POLYNOMIALS P(α,β)n(x)

  • Choi, Junesang;Shine, Raj S.N.;Rathie, Arjun K.
    • East Asian mathematical journal
    • /
    • v.31 no.1
    • /
    • pp.103-107
    • /
    • 2015
  • We use some known contiguous function relations for $_2F_1$ to show how simply the following three recurrence relations for Jacobi polynomials $P_n^{({\alpha},{\beta)}(x)$: (i) $({\alpha}+{\beta}+n)P_n^{({\alpha},{\beta})}(x)=({\beta}+n)P_n^{({\alpha},{\beta}-1)}(x)+({\alpha}+n)P_n^{({\alpha}-1,{\beta})}(x);$ (ii) $2P_n^{({\alpha},{\beta})}(x)=(1+x)P_n^{({\alpha},{\beta}+1)}(x)+(1-x)P_n^{({\alpha}+1,{\beta})}(x);$ (iii) $P_{n-1}^{({\alpha},{\beta})}(x)=P_n^{({\alpha},{\beta}-1)}(x)+P_n^{({\alpha}-1,{\beta})}(x)$ can be established.