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JACOBI DISCRETE APPROXIMATION FOR SOLVING

OPTIMAL CONTROL PROBLEMS

Mamdouh El-Kady

Abstract. This paper attempts to present a numerical method for solv-
ing optimal control problems. The method is based upon constructing the
n-th degree Jacobi polynomials to approximate the control vector and use

differentiation matrix to approximate derivative term in the state system.
The system dynamics are then converted into system of algebraic equa-
tions and hence the optimal control problem is reduced to constrained

optimization problem. Numerical examples illustrate the robustness, ac-
curacy and efficiency of the proposed method.

1. Introduction

Bellman’s dynamic programming and Pontryagin’s maximum principle pres-
ent the most known methods for solving optimal control problems. The com-
putational approaches are considered a very important part of the solution of
those problems [19]. In recent years, considerable attention has been given to
the use of spectral methods for solving optimal control problems [2, 12, 14, 15].

Part of the difficulty of optimal control is that the first order conditions yield
differential equation, which we have to solve to obtain a closed form solution
[13]. Hence, to solve optimal control problems we have to study the numerical
solutions of differential equations. The same previous attention, the spectral
methods play an important role for solving differential equations [9, 17, 16].

The Jacobi polynomials P
(α,β)
n (x) play important roles in approximation

theory and its applications, see [3, 4]. In his recent work [7, 5, 6] Doha develops
a class of spectral-Galerkin methods for the direct solution of higher order
differential equations. One of particular interest here is the Jacobi formula,
based on finite Jacobi expansion in terms of power of x.

In this paper, a numerical solution for solving optimal control problem is
presented. Spectral method is a family of techniques for solving optimal control
problems in which the summation in the numerical derivative is accelerated to
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produce a matrix representation that is not only exponentially convergent like
the discrete variable representation and other spectral methods but also sparse
like traditional finite differences and finite elements [11].

The proposed algorithm describes an alternative technique based on convert-
ing the system dynamics, the performance index and the initial or boundary
conditions into algebraic equations with unknown coefficients. The differenti-
ation and integration matrices based on Jacobi polynomials are produced here
to approximate the system dynamic and performance index, respectively. This
approach is based on the expansion of the control and state variables in Jacobi
series with unknown coefficients. In the system dynamics, we used collocation
method to approximate the derivatives arising in the system dynamics and
hence converted to algebraic equations.

In this way, the optimal control problem is converted to Non-Linear Pro-
gramming (NLP) problem, which consists of minimize the objective function,
subject to algebraic constraints. The resulting NLP problem can be solved
using well-known solvers such as IPOPT [10] or PPQI [8].

The paper is organized as follows: In Section 2, we introduce definitions of
Jacobi polynomial and some of its properties. In Section 3, the differentia-
tion and integration Jacobi matrices are introduced. In Section 4, we describe
the approximation of the optimal control problem and the solution technique
is summarized. In Section 5, numerical results are given to clarify the pro-
posed method and compared with other methods. In Section 6, remarks and
conclusions of the work are presented.

2. Jacobi polynomials and analytical properties

In this section some useful notations and results concerning the Jacobi poly-
nomials are introduced. Jacobi polynomials with the real parameter α, β > −1
are sequence of polynomials Pα,β

n (x), (n = 0, 1, 2, . . .). Let N ≥ 1 be an integer,
and let x0, x1, . . . , xN be a set of points in [−1, 1], where

−1 = x0 < x1 < · · · < xN−1 < xN = 1

are zeros of Jacobi polynomials with ends of interval [−1, 1]. Consider some of
Jacobi polynomials formulae, [1]

(1) P (α,β)
n (x) =

n∑
r=0

1

r!(n− r)!

Γ(α+ β + n+ r + 1)Γ(α+ n+ 1)

Γ(α+ β + n+ 1)Γ(α+ r + 1)
(
x− 1

2
)r,

(2) P (α,β)
n (x) =

n∑
r=0

(−1)n−r

r!(n− r)!

Γ(α+ β + n+ r + 1)Γ(β + n+ 1)

Γ(α+ β + n+ 1)Γ(β + r + 1)
(
x+ 1

2
)r,

(3) P (α,β)
n (x) =

(−1)n

2nn!
(1− x)−α(1 + x)−β dn

dxn
[(1− x)α+n(1 + x)β+n].
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An important property of the Jacobi polynomials is that they are orthogonal
with respect to the L2 inner product on the interval −1 ≤ x ≤ 1 and the weight
function is (1 + x)β(1− x)α, i.e.,

⟨P (α,β)
n P (α,β)

m ⟩ =

∫ 1

−1

(1− x)α(1 + x)βP (α,β)
n (x)P (α,β)

m (x)dx

= λ(α,β)
n δnm,(4)

where

λ(α,β)
n =

2α+β+1Γ(β + n+ 1)Γ(α+ n+ 1)

n!(α+ β + 2n+ 1)Γ(β + α+ n+ 1)
,

δnm =

{
0 if b ̸= m

1 if n = m.

The recurrence relations are giving by:

2n(α+ β + n)(α+ β + 2n− 2)P (α,β)
n (x)

= (α+ β + 2n− 1)(α2 + x(α+ β + 2n)(α+ β + 2n− 2))P
(α,β)
n−1 (x)(5)

− 2(α+ n− 1)(β + n− 1)(α+ β + 2n)P
(α,β)
n−2 (x)

with P
(α,β)
0 (x) = 1 and P

(α,β)
1 (x) = (α+ 1) + (α+ β + 2)(x−1

2 ).
Important special cases of Jacobi polynomials are the Chebyshev polynomi-

als of first and second kinds and Legendre polynomials (these are also instances
of Ultraspherical polynomials) which are directly obtainable from Jacobi poly-
nomials with specified parameters as follows:

Tj(x) are the Chebyshev polynomials of the first kind (α = β = − 1
2 ),

P
(− 1

2 ,
1
2 )

j (x) =
1 · 3 · · · (2j − 1)

2 · 4 · · · 2j
Tj(x).

Uj(x) are the Chebyshev polynomials of the second kind (α = β = 1
2 ),

U
( 1
2 ,

1
2 )

j (x) = 2
1 · 3 · · · (2j + 1)

2 · 4 · · · (2j + 2)
Uj(x).

Lj(x) are the Legendre polynomials (α = β = 0),

P
(0,0)
j (x) = Lj(x).

Finally, C
(α)
n (x) are the Ultraspherical polynomials (α = β),

C(α)
n (x) =

n!Γ(α+ 1/2)

Γ(n+ α+ 1/2)
P (α−1/2,α−1/2)
n (x).

The higher derivatives of the Jacobi polynomials are given by the following
theorem.



102 MAMDOUH EL-KADY

Theorem 1. The n-th derivatives of the Jacobi polynomials are given by

(6)
dn

dxn
P (α,β)
n (x) =

n∑
r=0

n∑
k=0

H(α,β)
n,r (x+ 1)n−r−k(x− 1)r−n+k,

where

H(α,β)
n,r =

n!

r!k!(n− k)!(n− r)!

Γ(β + n+ 1)Γ(α+ n+ 1)Γ(n− r + 1)Γ(r + 1)

Γ(β + n− r + 1)Γ(α+ r + 1)Γ(n− r − k + 1)Γ(r − n+ k + 1)
.

Proof. From Rodrigue’s formula of the Jacobi polynomials

P (α,β)
n (x) =

(−1)n

2nn!
(1− x)−α(1 + x)−β dn

dxn
[(1− x)α+n(1 + x)β+n].

Leiboniz’s theorem for the n-th derivative of a product gives

dn

dxn
{(1− x)α+n(1 + x)β+n}

=

n∑
r=0

n!

r!(n− r)!

{
dr

dxr
(1 + x)β+n

}{
dn−r

dxn−r
(1− x)α+n

}

=

n∑
r=0

n!

r!(n− r)!
(−1)n−r Γ(β + n+ 1)Γ(α+ n+ 1)

Γ(β + n− r + 1)Γ(α+ r + 1)
(1+ x)β+n−r(1− x)α+r.

Hence,

(7) P (α,β)
n (x) =

n∑
r=0

ϕ(α,β)
n,r (x+ 1)n−r(x− 1)r,

where

ϕ(α,β)
n,r =

(−1)2n−r

r!(n− r)!

Γ(β + n+ 1)Γ(α+ n+ 1)

2nΓ(β + n− r + 1)Γ(α+ r + 1)
.

The n-th derivatives of P
(α,β)
n (x) with respect to x are:

dn

dxn
P (α,β)
n (x) =

dn

dxn

n∑
r=0

ϕ(α,β)
n,r {(x+ 1)n−r(x− 1)r},

dn

dxn
P (α,β)
n (x) =

n∑
r=0

n∑
k=0

H(α,β)
n,r (x+ 1)n−r−k(x− 1)r−n+k,

where

H(α,β)
n,r =

n!

r!k!(n− k)!(n− r)!

Γ(β + n+ 1)Γ(α+ n+ 1)Γ(n− r + 1)Γ(r + 1)

2nΓ(β + n− r + 1)Γ(α+ r + 1)Γ(n− r − k + 1)Γ(r − n+ k + 1)
.

□
For the Jacobi polynomials, the following properties are considered in this

work:

(i) P (α,β)
n (−x) = (−1)nP (β,α)

n (x),

(ii) P (α,β)
n (1) =

Γ(α+ n+ 1)

n!Γ(α+ 1)
,
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(iii) P (α,β−1)
n (x)− P (α−1,β)

n (x) = P
(α,β)
n−1 (x).

Theorem 2. The integration of Jacobi polynomials is expressed in terms of
power of xi as follows:

(8)

∫ xi

−1

P (α,β)
n (x)dx =

n∑
r=0

K(α,β)
n,r

1

(r + 1)
[(xi − 1)r+1 − (−2)r+1],

where

K(α,β)
n,r =

1

2rr!(n− r)!

Γ(α+ β + n+ r + 1)Γ(α+ n+ 1)

Γ(α+ β + n+ 1)Γ(α+ r + 1)
.

Proof. From the equation (1), we have∫ xi

−1

P (α,β)
n (x)dx

=
n∑

r=0

1

2rr!(n− r)!

Γ(α+ β + n+ r + 1)Γ(α+ n+ 1)

Γ(α+ β + n+ 1)Γ(α+ r + 1)

∫ xi

−1

(x− 1)rdx

=
n∑

r=0

K(α,β)
n,r

1

(r + 1)
[(xi − 1)r+1 − (−2)r+1],

where

K(α,β)
n,r =

1

2rr!(n− r)!

Γ(α+ β + n+ r + 1)Γ(α+ n+ 1)

Γ(α+ β + n+ 1)Γ(α+ r + 1)
. □

3. Jacobi pseudospectral approximations

Here, we present Jacobi pseudospectral approximations of a function f(x) ∈
C∞[−1,1], at the set of (N+1) points, these points are zeros of (1−x2)P

(α,β)
N−1 (x),

i.e.,

(9) {xi : (1− x2)P
(α,β)
N−1 (x) = 0, i = 0, 1, . . . , N},

where N is the degree of the approximation.

Theorem 3. Consider the following discrete approximation of f(x) by using
Jacobi polynomials, i.e.,

(10) f(x) =
N∑
j=0

ajP
(α,β)
j (x).

Then the coefficients aj are given by:

(11) aj =
1

λ
(α,β)
j

N∑
k=0

A
(α,β)
k P

(α,β)
j (xk)f(xk), j = 0, . . . , N,

where

A
(α,β)
k =

2α+β+1Γ(α+N + 1)Γ(β +N + 1)

Γ(N + 1)Γ(α+ β +N + 1)(1− x2
k)(P

′(α,β)
N (xk))2
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and λ
(α,β)
j are given in the equation (4).

Proof. By using Gauss quadrature formulae for distinct zeros points of Jacobi
polynomials:

−1 < xN−1 ≤ · · · ≤ x1 < 1,

and the weight function w(x) = (1 − x)α(1 + x)β on the interval (−1, 1), we
have the constants a1, . . . , aN−1 such that:

aj =
1

λ
(α,β)
j

N−1∑
k=1

A
(α,β)
k P

(α,β)
j (xk)f(xk), j = 1, . . . , N − 1,

where

A
(α,β)
k =

2α+β+1Γ(α+N + 1)Γ(β +N + 1)

Γ(N + 1)Γ(α+ β +N + 1)(1− x2
k)(P

′(α,β)
N (xk))2

,

P
′(α,β)
N (x) is the first derivative of Jacobi polynomials given by (6) with n = 1.

The values of a0 and an can be determined by using properties in Section 2, as
follows:

f(−1) = a0P
(α,β)
0 (−1) + aNP

(α,β)
N (−1) +

N−1∑
j=1

ajP
(α,β)
j (−1),

f(1) = a0P
(α,β)
0 (1) + aNP

(α,β)
N (1) +

N−1∑
j=1

ajP
(α,β)
j (1).

□

3.1. Jacobi pseudospectral integration matrix

The integration of a function f(x) is approximated by interpolating the
function with Jacobi polynomial at set of (N + 1) point. That is,

(INf) = a0P
(α,β)
0 (x) + aNP

(α,β)
N (x)

+
N−1∑
j=1

{
1

λ
(α,β)
j

N−1∑
k=1

A
(α,β)
k P

(α,β)
j (xk)f(xk)

}
P

(α,β)
j (x)

= a0P
(α,β)
0 (x) + aNP

(α,β)
N (x)

+
N−1∑
k=1

A
(α,β)
k

N−1∑
j=1

1

λ
(α,β)
j

P
(α,β)
j (xk)P

(α,β)
j (x)

 f(xk).(12)

The integration of f(x) can be approximated as follows:∫ xi

−1

f(x)dx

= a0

∫ xi

−1

P
(α,β)
0 (x)dx+ aN

∫ xi

−1

P
(α,β)
N (x)dx
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N−1∑
j=1

A
(α,β)
k

N−1∑
j=1

1

λ
(α,β)
j

P
(α,β)
j (xk)

∫ xi

−1

P
(α,β)
j (x)dx

 f(xk), i = 0, . . . , N

using Theorem 2, we get:∫ xi

−1

f(x)dx = a0(xi + 1) + aN

N∑
r=0

K
(α,β)
N,r

1

(r + 1)
[(xi − 1)r+1 − (−2)r+1]

+
N−1∑
k=1

bi,kf(xk).

The matrix form is:

(13)

[∫ xi

−1

f(x)dx

]
= A+C+B[f ],

where the vectors A and C are given by the elements Ai = {a0(xi + 1)},
i = 0, . . . , N ,

A =
[
A0 · · · AN

]T
,

and

Ci =

{
aN

N∑
r=0

K
(α,β)
N,r

[(xi − 1)r+1 − (−2)r+1]

(r + 1)

}
,

for i = 0, . . . , N , are the elements of the vector:

Ci =
[
C0 · · · CN

]T
.

Finally, the matrix:

B =

 b0,1 · · · b0,N−1

...
...

bN,1 · · · bN,N−1


have the elements:

(14) bi,k =

A
(α,β)
k

N−1∑
j=1

N∑
r=0

K
(α,β)
j,r

(r + 1)λ
(α,β)
j

P
(α,β)
j (xk)[(xi − 1)r+1 − (−2)r+1]


for i = 0, . . . , N , and k = 1, . . . , N − 1.

The elements of the column matrix [f ] are given by f(xk); k = 0, . . . , N with
the first and last elements are f(x0) = f(−1), f(xN ) = f(1).

3.2. Jacobi pseudospectral differentiation matrix

In this section, the n-th approximate derivatives of f(x) are constructed by
using Jacobi interpolation polynomials (12) and the equation (6) as following:

f (n)(xi) =
N∑

k=0

d
(n)
i,k f(xk), i = 0, 1, . . . , N,
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where

(15) d
(n)
i,k = A

(α,β)
k

N∑
j=0

N∑
r=0

n∑
s=0

H
(α,β)
N,n

λ
(α,β)
j

P
(α,β)
j (xk)(xi + 1)N−r−s(xi − 1)r−n+s.

This can be written in matrix form as follows:

(16)

[
dn

dxn
f

]
= D(n)[f ].

Where D(n) is known (N + 1) × (N + 1) matrix and their elements given
by the equation (15). This formula gives us an improvement of the results as
shown in the numerical examples.

4. Optimal control problem formulation

In modern control systems design it is sometimes necessary to design con-
trollers that not only effectively control the behavior of a system, but also
minimize or maximize some user defined criteria such as energy or time con-
servation, or time constraints imposed by the environment. Optimal control
theory provides the mathematical tools for solving problems like these, either
analytically or through computer iterative methods, by formulating the user
criteria into a cost function and using the state equation representation for the
system dynamics [19].

The general formulation of the optimal control problem is as follows: Let
the system states be represented by an n-dimensional vector, where n is the
order of the system. Let the control variables (input) be represented by an
m-dimensional vector u. The system can (formally called system dynamic) be
represented by a set of differential equations of the form:

(17)
dx(τ)

dτ
= F (x(τ), u(τ), τ),

(18) x(τ0) = x0,

where F are general expressions of x(τ) and u(τ), τ0 is the initial time and x0

is an n-dimensional set of initial conditions. The objective is to find a control
input u(τ) that will drive the system from the initial point x0 in the state
space to the final point τf , and at the same time minimize a cost functional J
(formally called performance index) given by:

(19) J = h(x(τf ), τf ) +

∫ τf

τ0

g(x(τ), u(τ), τ)dτ,

where τf represents the end of the control interval, h and g are user defined
penalty expressions. Consider the following transformation:

t =
2τ − (τf + τ0)

(τf − τ0)
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is introduced in order to use Jacobi polynomials defined on the interval [−1, 1].
It follows that equations (17)-(19) are replaced by:

(20)
dx(t)

dt
= F (x(t), u(t), t),−1 ≤ t ≤ 1,

(21) x(−1) = x0,

(22) J = h(x(1)) +

∫ 1

−1

g(x(t), u(t), t)dt.

The numerical algorithm is based on applying pseudospectral Jacobi method
to approximate the derivatives and integral appear in the system dynamics and
objective functional, respectively, to convert the optimal control problem into
non-linear programming problem. To this end, the control variables are ap-
proximated by a finite series of Jacobi polynomial as follows: Consider the
differentiation and integration matrices D and B pseudospectral Jacobi ap-
proximation, respectively. Then we have the following approximations:

(23) x(n)(ti) =

N∑
j=0

d
(n)
i,j x(ti), i = 0, 1, . . . , N,

(24)

∫ 1

−1

x(t)dt =
N∑
j=0

bN,jx(tj),

where (bi,j) are the elements of the matrix B given in the equation (13), (di,j)
are the elements of the matrix D given in the equation (16). By expanding the
control variable in Jacobi series of order, we have:

(25) um(t) =
m∑

k=0

akP
(α,β)
k (t),

where P
(α,β)
k (t) are the k-th Jacobi polynomials.

The system dynamics (20) can be approximated as follows:

(26)

N∑
j=0

dijx(tj) = F

(
x(ti),

m∑
k=0

akP
(α,β)
k (t), tj

)
,

which can be written in the form:

(27) g[γ, λ] = 0,

where

(28) γ = [x(t0), x(t1), . . . , x(tN )] , λ = [a0, a1, . . . , am].

The performance index (22) can be approximated as follows:

J = h(xN ) +
N−1∑
j=1

bN,jg(x(tj), u(tj), tj),
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(29) J = J(γ, λ).

Generally, J is nonlinear in γ, λ.
We have confined attention in the previous paragraph to equality constraints.

In fact, any inequality constraint can be converted to an equality constraint by
introducing an extra ‘slack’ variable.

The inequality constraint gk(x) < 0 can be converted to equality constraint
by introducing the slack variable xN+k to be

gk(x) + x2
N+k = 0,

and the inequality constraint gk(x) > 0 can be converted to equality constraint
by introducing the slack variable xN+k to be

gk(x)− x2
N+k = 0.

The optimal control problem has been reduced to a parameter optimization
problem, i.e.,

Minimize J = J(γ, λ).

Subject to g[γ, λ] = 0.

Any techniques are available in such case such as Lagrange multiplier or
penalty approaches. We prefer the penalty function approach with partial
quadratic interpolation method (PPQI) as [8]. Urabe [18] has described a
method to determine very accurately numerical solution of nonlinear ordinary
differential equations, and has shows how to study the existence and uniqueness
problem of an exact solution near the calculated Chebyshev approximation, and
how estimate the error on the approximation, i.e.,

| J(γN+1, λN+1)− J(γN , λN )| < ε.

5. Numerical results

In this section, we present some numerical results using the proposed method
and compare the results with other works. The performance of the proposed
Jacobi approach was evaluated by identifying parameters for number of vari-
ables in the system dynamic.

Example 1. Find the control u(t) that

(30) Minimizes J =
1

2

∫ 1

−1

[x2
1(t) + x2

2(t) + 0.005u2(t)]dt.

(31) Subject to 2x′
1(t) = x2(t), 2x′

2(t) = −x2(t) + u(t),

and

(32) x1(−1) = 0, x2(−1) = −1.
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Substituting from equations (23) and (25) into the objective and system
dynamics (30)-(32), we have the following constrained optimization problem

Minimize J =
1

2

N−1∑
j=1

bN,j

x2
1(tj) + x2

2(tj) + 0.005

(
m∑

k=0

akP
(α,β)
k (tj)

)2
 .

Subject to G1i =: 2

N∑
j=0

di,jx1(tj)− x2(ti) = 0, i = 0, . . . , N,

G2i =: 2

N∑
j=0

di,jx2(tj) + x2(ti)−
m∑

k=0

akP
(α,β)
k (ti) = 0, i = 0, . . . , N,

and

x1(−1) = 0, x2(−1) = −1.

This parameter optimization problem can be solved by using PPQI. In case
of N = 8 and M = 8 with (α, β) = (0.99, 0.26) we got the optimal objective
functional J∗ = 0.0693617. A comparison between the present method and
other methods are given in Table 1.

Table 1: An objectives of Example 1

Methods J∗

H. Jaddu [11] 0.0693689
Present method 0.0693617
Exact solution 0.0693609
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Figure 1. States x1(t), x2(t) of Example 1
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Figure 2. Control variable u(t) of Example 1

Example 2. Solve Example 1 with auxiliary inequality constraint:

(33) x2(t)− 2t2 + 0.5 ≤ 0.

The present method was applied as above with the following additional
equality constraints:

G3i = x2(ti)− 2t2i + 0.5 + h2
i = 0, i = 0, . . . , N.

In case of N = 8,M = 8 and (α, β) = (0.99, 0.60), the optimal objective
functional was J∗ = 0.16917833. Comparisons between the present method
and other methods are given in Table 2.

Table 2: An objectives of Example 2

Methods J∗

Vlassenbroeck [19] 0.18000000
H. Jadu [11] 0.1708488

Present method 0.16917833

The simulation graphs for the problem are given in Figures 1, 3 which con-
sists of the states variable x1, x2, these variables satisfying the original system
(31) and initial condition (32). The controlled variable u corresponding to
states variables of the criterion problem are described in Figures 2, 4.

6. Conclusion

In this paper a Jacobi expansion method has been used to convert the opti-
mal control problem into a parameter constrained optimization problem. The
Penalty partial quadratic interpolation (PPQI) technique has been used to
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Figure 3. States x1(t), x2(t) of Example 2
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Figure 4. Control u(t) of Example 2

generate the optimal solution. Figures and tables contents the results of some
problems. Each of these problems is solved by converting it into a quadratic
programming problem using the Jacobi polynomials. The proposed method
will be generalized to solve nonlinear optimal control problem with general
boundary conditions.
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