• Title/Summary/Keyword: JNK/c-Jun

Search Result 320, Processing Time 0.028 seconds

Effects of GuBoEum Inhibiting NO, TNF-$\alpha$, IL-6 and IL-12 Production by Blocking MAP Kinase Activation in LPS-induced Murine Macrophages (LPS로 유도한 대식세포에서 MAP kinase의 억제에 의한 구보음(九寶飮)의 NO, TNF-$\alpha$, IL-6, IL-12 생성 억제 효과)

  • Lee, Byung-Soon;Shin, Jo-Young;Lee, Si-Hyeong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.104-112
    • /
    • 2009
  • The purpose of this study was to investigate the anti-inflammatory effects of extract from GuBoEum(GBE) on the peritoneal macrophage. To evaluate anti-inflammatory effects of GBE. I measured cytokines (interleukin-6; IL-6, interleukin-12; IL-12, tumor necrosis factor-$\alpha$; TNF-$\alpha$) and nitric oxide (NO) production in lipopolysacchride (LPS)-induced macrophages. Furthermore, I examined molecular mechanism using western blot and also LPS-induced endotoxin shock. Extract from GBE does not have any cytotoxic effect in the peritoneal macrophages. Extract from GBE reduced LPS-induced IL-6, TNF-$\alpha$, IL-12 and NO production in peritoneal macrophages. GBE inhibited the activation of extracelluar signal-regulated kinase (ERK), C-Jun $NH_2$-terminal kinase (JNK) but not of p38, degradation of $I{\kappa}B-{\alpha}$ in the LPS-stimulated peritoneal macrophages. GBE inhibited the production of TNF-$\alpha$, IL-6 and IL-12 in serum after LPS injection. These results suggest that GBE may inhibit the production of TNF-$\alpha$, IL-6, and IL-12 through inhibition of ERK and JNK activation, and that GBE may be beneficial oriental medicine for inflammatory diseases.

Inhibitory Effect of Dendrobium moniliforme on NO and IL-$1{\beta}$ Production in LPS-stimulated Macrophages (LPS로 자극된 대식세포에서 석곡의 NO 및 IL-$1{\beta}$ 생성 억제 효과)

  • Park, Ga-Young;Bae, Chang-Hwan;Park, Sun-Young;Kim, Ji-Hee;Ko, Woo-Shin;Kim, Young-Hee
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.22 no.3
    • /
    • pp.11-19
    • /
    • 2009
  • 석곡은 난초과의 여러해살이풀 Dendrobium moniliforme의 지상부를 건조한 것으로 예로부터 양위생진(養胃生津), 자음제열(滋陰除熱) 등의 효능이 있어 해열, 진통의 작용과 위액분비 촉진, 혈압강하의 작용이 있는 것으로 알려져 있다. 본 연구에서는 석곡의 항염증 작용 기전을 알아보기 위하여 석곡 열수추출물을 대식세포주에 처리하여 NO 및 IL-$1{\beta}$의 생성에 미치는 영향을 조사하였다. LPS로 자극된 대식세포주 RAW264.7 세포에서 석곡은 NO 및 IL-$1{\beta}$ 생성과 iNOS 단백질 발현을 저해하였으며, LPS에 의해서 활성화되는 ERK, p38, JNK 효소의 활성을 현저히 억제하였다. 이 결과들로 보아 석곡의 항염증 작용이 MAPK 활성 저해로 인한 NO 및 IL-$1{\beta}$ 생성의 억제 때문인 것으로 사료된다.

  • PDF

Effects of Patrinia Scabiosaefolia Aqueous Extract on Cytokine and NF-κB Activation in LPS-induced RAW 264.7 Cells and Mouse (패장(敗醬) 물 추출물의 LPS로 유도된 RAW 264.7 세포와 mouse 염증모델에서 cytokine 및 NF-κB의 활성에 미치는 효과)

  • Ryu, Ik-Han;Cho, Hae-Joong;Song, Mi-Hwa;Choi, Chang-Min
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.30 no.2
    • /
    • pp.1-15
    • /
    • 2017
  • Objectives: The object of this study was to identify the anti-inflammatory effects of Patrinia scabiosaefolia aqueous extract (PSE). Methods: RAW 264.7 cells were pre-treated with PSE and then incubated with or without lipopolysaccharide (LPS). Cell viability, production of nitric oxide (NO), secretion of pro-inflammatory cytokine, activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-${\kappa}B$) were measured. In addition, we observed mice survival rate after LPS and their cytokine levels of serum. We also observed inflammatory and hemorrhagic change on the histological sections of the liver. Results: PSE inhibited LPS-induced NO production, interleukin (IL)-6 secretion, c-Jun NH2-terminal kinase (JNK) and NF-${\kappa}B$ activation. In addition, PSE reduced the death rate of LPS-induced mice and IL-6 production on the serum of mice. PSE inhibited inflammation and hemorrhage on liver tissue as well. Conclusions: The results suggest that PSE have anti-inflammatory effects by inhibited NF-${\kappa}B$ and JNK activation, IL-6 secretion, and NO production. So PSE may be effective treatment for the inflammatory disease.

Cardamonin Suppresses TGF-β1-Induced Epithelial Mesenchymal Transition via Restoring Protein Phosphatase 2A Expression

  • Kim, Eun Ji;Kim, Hyun Ji;Park, Mi Kyung;Kang, Gyeung Jin;Byun, Hyun Jung;Lee, Ho;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.23 no.2
    • /
    • pp.141-148
    • /
    • 2015
  • Epithelial mesenchymal transition (EMT) is the first step in metastasis and implicated in the phenotype of cancer stem cells. Therefore, understanding and controlling EMT, are essential to the prevention and cure of metastasis. In the present study, we examined, by Western blot, reverse transcription polymerase chain reaction (RT-PCR), and confocal microscopy, the effects of cardamonin (CDN) on transforming growth factor-${\beta}1$ (TGF-${\beta}1$)-induced EMT of A549 lung adenocarcinoma cell lines. TGF-${\beta}1$ induced expression of N-cadherin and decreased expression of E-cadherin. CDN suppressed N-cadherin expression and restored E-cadherin expression. Further, TGF-${\beta}1$ induced migration and invasion of A549 cancer cells, which was suppressed by CDN. TGF-${\beta}1$ induced c-Jun N-terminal kinase (JNK) activation during EMT, but CDN blocked it. Protein serine/threonine phosphatase 2A (PP2A) expression in A549 cancer cells was reduced by TGF-${\beta}1$ but CDN restored it. The overall data suggested that CDN suppresses TGF-${\beta}1$-induced EMT via PP2A restoration, making it a potential new drug candidate that controls metastasis.

Negative noxiousness of aldosterone analogue-induced hypertension and inhibition of aldosterone by silver spike point electrical stimulation (Aldosterone 유도체-고혈압의 음성적 유해와 은침점전기자극의 aldosterone 억제)

  • Chon, Ki-Young;Kim, Jung-Hwan;Kim, Soon-Hee;Min, Kyung-Ok
    • Journal of Korean Physical Therapy Science
    • /
    • v.10 no.2
    • /
    • pp.199-207
    • /
    • 2003
  • The present study examined that in vivo/vitro test is investigated in normotensive sham-operated rats(NSR) and aldosterone-analogue deoxycorticosterone acetate (DOCA)-salt hypertensive rats(ADHR) and that the antiliypertensive effect was induced by silver spike point(SSP) electrical stimulation at meridian points(CV-3, -4, Ki-12, SP-6, LR-3, BL-25, -28, -32, -52), specifically, such as aldosterone in 24 hour urine analysis from normal volunteer. The heart weight, the tickness of vascular wall, collagen fiber and the systolic blood pressure were significantly increased in ADHR than that in NSR. The required time of PSS-induced resting tone and the phosphorylation of stress-activated protein kinase/c-Jun N-terminal protein kinase(SAPK/JNK) were significantly increased in ADHR than that in NSR. However, the Kv currents were significantly decreased in ADHR than that in NSR. The current of 1 Hz continue type of SSP electrical stimulation significantly decreased in excretion of urine aldosterone from normal volunteer. These results suggest that the development of aldosterone analogue-induced hypertension is associated with changed heart weight, content of collagen fiber, tickness of vascular wall, blood pressure, resting tone, voltage-dependent K+ current(Kv) and phosphorylation of SAPK/JNK, which directly affects blood pressure. Therefore the hypertension is a risk factor on cerebrovascular disease. Moreover, These results suggest that the SSP electrical stimulation, especially current of 1 Hz continue type, significantly regulates excretion of urine aldosterone from volunteer.

  • PDF

Anti-inflammatory effects of a novel compound, MPQP, through the inhibition of IRAK1 signaling pathways in LPS-stimulated RAW 264.7 macrophages

  • Kim, Ba Reum;Cho, Young-Chang;Cho, Sayeon
    • BMB Reports
    • /
    • v.51 no.6
    • /
    • pp.308-313
    • /
    • 2018
  • Small-molecule inhibitors are widely used to treat a variety of inflammatory diseases. In this study, we found a novel anti-inflammatory compound, 1-[(2R,4S)-2-methyl-4-(phenylamino)-1,2,3,4-tetrahydroquinolin-1-yl]prop-2-en-1-one (MPQP). It showed strong anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. These effects were exerted through the inhibition of the production of NO and pro-inflammatory cytokines, such as interleukin (IL)-6, $IL-1{\beta}$, and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$). Furthermore, MPQP decreased the expression levels of inducible NO synthase (iNOS) and cyclooxygenase 2 (COX-2). Additionally, it mediated the inhibition of the phosphorylation of p38, c-Jun N-terminal kinase (JNK), the inhibitor of ${\kappa}B{\alpha}$ ($I{\kappa}B{\alpha}$), and their upstream kinases, $I{\kappa}B$ kinase (IKK) ${\alpha}/{\beta}$, mitogen-activated protein kinase kinase (MKK) 3/6, and MKK4. Furthermore, the expression of IL-1 receptor-associated kinase 1 (IRAK1) that regulates $NF-{\kappa}B$, p38, and the JNK signaling pathways, was also increased by MPQP. These results indicate that MPQP regulates the IRAK1-mediated inflammatory signaling pathways by targeting IRAK1 or its upstream factors.

TI-I-174, a Synthetic Chalcone Derivative, Suppresses Nitric Oxide Production in Murine Macrophages via Heme Oxygenase-1 Induction and Inhibition of AP-1

  • Kim, Mi Jin;Kadayat, Taraman;Kim, Da Eun;Lee, Eung-Seok;Park, Pil-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.22 no.5
    • /
    • pp.390-399
    • /
    • 2014
  • Chalcones (1,3-diaryl-2-propen-1-ones), a flavonoid subfamily, are widely known for their anti-inflammatory properties. Propenone moiety in chalcones is known to play an important role in generating biological responses by chalcones. In the present study, we synthesized chalcone derivatives structurally modified in propenone moiety and examined inhibitory effect on nitric oxide (NO) production and its potential mechanisms. Among the chalcone derivatives used for this study, TI-I-174 (3-(2-Hydroxyphenyl)-1-(thiophen-3-yl)prop-2-en-1-one) most potently inhibited lipopolysaccharide (LPS)-stimulated nitrite production in RAW 264.7 macrophages. TI-I-174 treatment also markedly inhibited inducible nitric oxide synthase (iNOS) expression. However, TI-I-174 did not significantly affect production of IL-6, cyclooxygenase-2 (COX-2) and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), implying that TI-I-174 inhibits production of inflammatory mediators in a selective manner. Treatment of macrophages with TI-I-174 significantly inhibited transcriptional activity of activator protein-1 (AP-1) as determined by luciferase reporter gene assay, whereas nuclear factor-${\kappa}B$ (NF-${\kappa}B$) activity was not affected by TI-I-1744. In addition, TI-I-174 significantly inhibited activation of c-Jun-N-Terminal kinase (JNK) without affecting ERK1/2 and p38MAPK, indicating that down-regulation of iNOS gene expression by TI-I-174 is mainly attributed by blockade of JNK/AP-1 activation. We also demonstrated that TI-I-174 treatment led to an increase in heme oxygenase-1 (HO-1) expression both at mRNA and protein level. Transfection of siRNA targeting HO-1 reversed TI-I-174-mediated inhibition of nitrite production. Taken together, these results indicate that TI-I-174 suppresses NO production in LPS-stimulated RAW 264.7 macrophages via induction of HO-1 and blockade of AP-1 activation.

Mitogen-Activated Protein Kinase Signal Transduction in Solid Tumors

  • Lei, Yuan-Yuan;Wang, Wei-Jia;Mei, Jin-Hong;Wang, Chun-Liang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8539-8548
    • /
    • 2014
  • Mitogen-activated protein kinase (MAPK) is an important signaling pathway in living beings in response to extracellular stimuli. There are 5 main subgroups manipulating by a set of sequential actions: ERK(ERK1/ERK2), c-Jun N(JNK/SAPK), p38 MAPK($p38{\alpha}$, $p38{\beta}$, $p38{\gamma}$ and $p38{\delta}$), and ERK3/ERK4/ERK5. When stimulated, factors of upstream or downstream change, and by interacting with each other, these groups have long been recognized to be related to multiple biologic processes such as cell proliferation, differentiation, death, migration, invasion and inflammation. However, once abnormally activated, cancer may occur. Several components of the MAPK network have already been proposed as targets in cancer therapy, such as p38, JNK, ERK, MEK, RAF, RAS, and DUSP1. Among them, alteration of the RAS-RAF-MEK-ERK-MAPK(RAS-MAPK) pathway has frequently been reported in human cancer as a result of abnormal activation of receptor tyrosine kinases or gain-of-function mutations in genes. The reported roles of MAPK signaling in apoptotic cell death are controversial, so that further in-depth investigations are needed to address these controversies. Based on an extensive analysis of published data, the goal of this review is to provide an overview on recent studies about the mechanism of MAP kinases, and how it generates certain tumors, as well as related treatments.

Anti-inflammatory effect of ozonated krill (Euphausia superba) oil in lipopolysaccharide-stimulated RAW 264.7 macrophages

  • Kim, Hong-Deok;Lee, Soo-Bin;Ko, Seok-Chun;Jung, Won-Kyo;Kim, Young-Mog;Kim, Seon-Bong
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.6
    • /
    • pp.15.1-15.9
    • /
    • 2018
  • Background: Inflammation has been known to associate with many human diseases. The objective of this study was to evaluate an anti-inflammatory effect of ozonated krill (Euphausia superba) oil, which was prepared by the treatment of krill oil using ozone gas. The anti-inflammatory activity was evaluated in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Results: Ozonated krill oil significantly inhibited nitric oxide (NO) production and suppressed the mRNA and protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW 264.7 macrophages. Ozonated krill oil also reduced the mRNA expression of inflammatory cytokines such as interleukin (IL)-$1{\beta}$, IL-6, and tumor necrosis factor (TNF)-${\alpha}$ in LPS-stimulated RAW 264.7 macrophages. To elucidate the mechanism underlying the anti-inflammatory activity of ozonated krill oil, we evaluated the effects of ozonated krill oil on the activation of mitogen-activated protein kinases (MAPKs) pathway. Ozonated krill oil suppressed the LPS-stimulated phosphorylation of p38 MAPK and c-Jun N-terminal kinases (JNK). Conclusion: This study revealed that the ozonated krill oil exhibited an anti-inflammatory effect in LPS-stimulated RAW 264.7 macrophages. To the best of our knowledge, this is the first report that ozonated krill oil suppressed pro-inflammatory mediator and cytokine expression in LPS-stimulated RAW 264.7 macrophages by inhibiting the phosphorylation of p38 MAPK and JNK.

Effects of Hoesaeng-san Ethanol Extract on the Human Mast cell-mediated Inflammatory Responses (회생산(回生散) 에탄올 추출물이 비만세포 매개성 염증반응에 미치는 영향)

  • Park, Jee Hea;Kwon, Dong Yeol;Lee, Su Kyung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.1
    • /
    • pp.45-52
    • /
    • 2014
  • Hoesaeng-san is known to be effective for treating diarrhea and vomiting. However the therapeutic mechanism of Hoesaeng-san is still not well understood. The aim of the present study was to demonstrate the effects of Hoesaeng-san ethanol extract (HSSEE) on the expression of pro-inflammatory cytokines, as well as to elucidate its mechanism of action in the human mast cell line (HMC-1). Mast Cell were stimulated with phorbol 12-myristate 13-acetate (PMA) plus A23187 in the presence or absence of HSSEE. To study the possible effects of HSSEE, ELISA, RT-PCR, Western blot analysis were used in this study. HSSEE significantly inhibited the PMA plus A23187-induction of inflammatory cytokines such as tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6 and IL-8. In activated HMC-1 cells, phosphorylation of extra-signal response kinase (ERK) 1/2 and c-jun n-terminal kinase (JNK)1/2 decreased after treatment with HSSEE. Moreover HSSEE inhibited PMA plus A23187-induced nuclear factor (NF)-${\kappa}B$ activation and $I{\kappa}B$ degradation. HSSEE suppressed the expression of TNF-${\alpha}$, IL-6, IL-8 through a decrease in the ERK 1/2 and JNK 1/2, as well as activation of NF-${\kappa}B$. These results indicated that HSSEE exerted a regulatory effect on inflammatory reactions mediated by mast cells.