Browse > Article
http://dx.doi.org/10.4062/biomolther.2014.062

TI-I-174, a Synthetic Chalcone Derivative, Suppresses Nitric Oxide Production in Murine Macrophages via Heme Oxygenase-1 Induction and Inhibition of AP-1  

Kim, Mi Jin (College of Pharmacy, Yeungnam University)
Kadayat, Taraman (College of Pharmacy, Yeungnam University)
Kim, Da Eun (College of Pharmacy, Yeungnam University)
Lee, Eung-Seok (College of Pharmacy, Yeungnam University)
Park, Pil-Hoon (College of Pharmacy, Yeungnam University)
Publication Information
Biomolecules & Therapeutics / v.22, no.5, 2014 , pp. 390-399 More about this Journal
Abstract
Chalcones (1,3-diaryl-2-propen-1-ones), a flavonoid subfamily, are widely known for their anti-inflammatory properties. Propenone moiety in chalcones is known to play an important role in generating biological responses by chalcones. In the present study, we synthesized chalcone derivatives structurally modified in propenone moiety and examined inhibitory effect on nitric oxide (NO) production and its potential mechanisms. Among the chalcone derivatives used for this study, TI-I-174 (3-(2-Hydroxyphenyl)-1-(thiophen-3-yl)prop-2-en-1-one) most potently inhibited lipopolysaccharide (LPS)-stimulated nitrite production in RAW 264.7 macrophages. TI-I-174 treatment also markedly inhibited inducible nitric oxide synthase (iNOS) expression. However, TI-I-174 did not significantly affect production of IL-6, cyclooxygenase-2 (COX-2) and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), implying that TI-I-174 inhibits production of inflammatory mediators in a selective manner. Treatment of macrophages with TI-I-174 significantly inhibited transcriptional activity of activator protein-1 (AP-1) as determined by luciferase reporter gene assay, whereas nuclear factor-${\kappa}B$ (NF-${\kappa}B$) activity was not affected by TI-I-1744. In addition, TI-I-174 significantly inhibited activation of c-Jun-N-Terminal kinase (JNK) without affecting ERK1/2 and p38MAPK, indicating that down-regulation of iNOS gene expression by TI-I-174 is mainly attributed by blockade of JNK/AP-1 activation. We also demonstrated that TI-I-174 treatment led to an increase in heme oxygenase-1 (HO-1) expression both at mRNA and protein level. Transfection of siRNA targeting HO-1 reversed TI-I-174-mediated inhibition of nitrite production. Taken together, these results indicate that TI-I-174 suppresses NO production in LPS-stimulated RAW 264.7 macrophages via induction of HO-1 and blockade of AP-1 activation.
Keywords
Chalcone; Heme oxygenase-1; Inflammation; Lipopolysaccharide; Nitric oxide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nussler, A. K. and Billiar, T. R. (1993) Inflammation, immunoregulation, and inducible nitric oxide synthase. J. Leukoc. Biol. 54, 171-178.   DOI
2 Onyiah, J. C., Sheikh, S. Z., Maharshak, N., Steinbach, E. C., Russo, S. M., Kobayashi, T., Mackey, L. C., Hansen, J. J., Moeser, A. J., Rawls, J. F., Borst, L. B., Otterbein, L. E. and Plevy, S. E. (2013) Carbon monoxide and heme oxygenase-1 prevent intestinal inflammation in mice by promoting bacterial clearance. Gastroenterology 144, 789-798.   DOI
3 Otterbein, L. E., Soares, M. P., Yamashita, K. and Bach, F. H. (2003) Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol. 24, 449-455.   DOI   ScienceOn
4 Park, P. H., Kim, H. S., Jin, X. Y., Jin, F., Hur, J., Ko, G. and Sohn, D. H. (2009) KB-34, a newly synthesized chalcone derivative, inhibits lipopolysaccharide-stimulated nitric oxide production in RAW 264.7 macrophages via heme oxygenase-1 induction and blockade of activator protein-1. Eur. J. Pharmacol. 606, 215-224.   DOI   ScienceOn
5 Ruan, R. S. (2002) Possible roles of nitric oxide in the physiology and pathophysiology of the mammalian cochlea. Ann. N. Y. Acad. Sci. 962, 260-274.   DOI
6 Sasaki, T., Takahashi, T., Maeshima, K., Shimizu, H., Toda, Y., Morimatsu, H., Takeuchi, M., Yokoyama, M., Akagi, R. and Morita, K. (2006) Heme arginate pretreatment attenuates pulmonary NF-kappaB and AP-1 activation induced by hemorrhagic shock via heme oxygenase-1 induction. Med. Chem. 2, 271-274.
7 Sawle, P., Foresti, R., Mann, B. E., Johnson, T. R., Green, C. J. and Motterlini, R. (2005) Carbon monoxide-releasing molecules (CORMs) attenuate the inflammatory response elicited by lipopolysaccharide in RAW264.7 murine macrophages. Br. J. Pharmacol. 145, 800-810.   DOI   ScienceOn
8 True, A. L., Olive, M., Boehm, M., San, H., Westrick, R. J., Raghavacha ri, N., Xu, X., Lynn, E. G., Sack, M. N., Munson, P. J., Gladwin, M. T. and Nabel, E. G. (2007) Heme oxygenase-1 deficiency accelerates formation of arterial thrombosis through oxidative damage to the endothelium, which is rescued by inhaled carbon monoxide. Circ. Res. 101, 893-901.   DOI   ScienceOn
9 Wu, J., Li, J., Cai, Y., Pan, Y., Ye, F., Zhang, Y., Zhao, Y., Yang, S., Li, X. and Liang, G. (2011) Evaluation and discovery of novel synthetic chalcone derivatives as anti-inflammatory agents. J. Med. Chem. 54, 8110-8123.   DOI   ScienceOn
10 Yasui, Y., Nakamura, M., Onda, T., Uehara, T., Murata, S., Matsui, N., Fukuishi, N., Akagi, R., Suematsu, M. and Akagi, M. (2007) Heme oxygenase-1 inhibits cytokine production by activated mast cells. Biochem. Biophys. Res. Commun. 354, 485-490.   DOI   ScienceOn
11 Hsieh, C. H., Jeng, S. F., Hsieh, M. W., Chen, Y. C., Rau, C. S., Lu, T. H. and Chen, S. S. (2008) Statin-induced heme oxygenase-1 increases NF-kappaB activation and oxygen radical production in cultured neuronal cells exposed to lipopolysaccharide. Toxicol. Sci. 102, 150-159.   DOI
12 Karki, R., Thapa, P., Kang, M. J., Jeong, T. C., Nam, J. M., Kim, H. L., Na, Y., Cho, W. J., Kwon, Y. and Lee, E. S. (2010) Synthesis, topoisomerase I and II inhibitory activity, cytotoxicity, and structureactivity relationship study of hydroxylated 2,4-diphenyl-6-aryl pyridines. Bioorg. Med. Chem. 18, 3066-3077.   DOI   ScienceOn
13 Kim, S. H., Lee, E., Baek, K. H., Kwon, H. B., Woo, H., Lee, E. S., Kwon, Y. and Na, Y. (2013) Chalcones, inhibitors for topoisomerase I and cathepsin B and L, as potential anti-cancer agents. Bioorg. Med. Chem. Lett. 23, 3320-3324.   DOI
14 Kontogiorgis, C., Mantzanidou, M. and Hadjipavlou-Litina, D. (2008) Chalcones and their potential role in inflammation. Mini Rev. Med. Chem. 8, 1224-1242.   DOI
15 Kwak, M. K., Itoh, K., Yamamoto, M. and Kensler, T. W. (2002) Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter. Mol. Cell. Biol. 22, 2883-2892.   DOI   ScienceOn
16 Madan, B., Batra, S. and Ghosh, B. (2000) 2'-hydroxychalcone inhibits nuclear factor-kappaB and blocks tumor necrosis factor-alpha-and lipopolysaccharide-induced adhesion of neutrophils to human umbilical vein endothelial cells. Mol. Pharmacol. 58, 526-534.   DOI
17 Na, H. K. and Surh, Y. J. (2014) Oncogenic potential of Nrf2 and its principal target protein heme oxygenase-1. Free Radic. Biol. Med. 67, 353-365.   DOI
18 Maines, M. D. (1997) The heme oxygenase system: a regulator of second messenger gases. Annu. Rev. Pharmacol. Toxicol. 37, 517-554.   DOI   ScienceOn
19 Moncada, S. and Higgs, A. (1993) The L-arginine-nitric oxide pathway. N. Engl. J. Med. 329, 2002-2012.   DOI   ScienceOn
20 Motterlini, R., Foresti, R., Bassi, R. and Green, C. J. (2000) Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic. Biol. Med. 28, 1303-1312.   DOI   ScienceOn
21 Nguyen, T., Sherratt, P. J., Huang, H. C., Yang, C. S. and Pickett, C. B. (2003) Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26 S proteasome. J. Biol. Chem. 278, 4536-4541.   DOI   ScienceOn
22 Numazawa, S., Ishikawa, M., Yoshida, A., Tanaka, S. and Yoshida, T. (2003) Atypical protein kinase C mediates activation of NF-E2-related factor 2 in response to oxidative stress. Am. J. Physiol. Cell Physiol. 285, C334-342.   DOI   ScienceOn
23 Ashino, T., Yamanaka, R., Yamamoto, M., Shimokawa, H., Sekikawa, K., Iwakura, Y., Shioda, S., Numazawa, S. and Yoshida, T. (2008) Negative feedback regulation of lipopolysaccharide-induced inducible nitric oxide synthase gene expression by heme oxygenase-1 induction in macrophages. Mol. Immunol. 45, 2106-2115.   DOI   ScienceOn
24 Abuarqoub, H., Foresti, R., Green, C. J. and Motterlini, R. (2006) Heme oxygenase-1 mediates the anti-inflammatory actions of 2'-hydroxychalcone in RAW 264.7 murine macrophages. Am. J. Physiol. Cell Physiol. 290, C1092-1099.   DOI
25 Batovska, D., Parushev, S., Slavova, A., Bankova, V., Tsvetkova, I., Ninova, M. and Najdenski, H. (2007) Study on the substituents' effects of a series of synthetic chalcones against the yeast Candida albicans. Eur. J. Med. Chem. 42, 87-92.   DOI   ScienceOn
26 Alcaraz, M. J., Vicente, A. M., Araico, A., Dominguez, J. N., Terencio, M. C. and Ferrandiz, M. L. (2004) Role of nuclear factor-kappaB and heme oxygenase-1 in the mechanism of action of an anti-inflammatory chalcone derivative in RAW 264.7 cells. Br. J. Pharmacol. 142, 1191-1199.   DOI   ScienceOn
27 Avila, H. P., Smania Ede, F., Monache, F. D. and Smania, A., Jr. (2008) Structure-activity relationship of antibacterial chalcones. Bioorg. Med. Chem. 16, 9790-9794.   DOI   ScienceOn
28 Ban, H. S., Suzuki, K., Lim, S. S., Jung, S. H., Lee, S., Ji, J., Lee, H. S., Lee, Y. S., Shin, K. H. and Ohuchi, K. (2004) Inhibition of lipopolysaccharide-induced expression of inducible nitric oxide synthase and tumor necrosis factor-alpha by 2'-hydroxychalcone derivatives in RAW 264.7 cells. Biochem. Pharmacol. 67, 1549-1557.   DOI   ScienceOn
29 Berger, B., Rothmaier, A. K., Wedekind, F., Zentner, J., Feuerstein, T. J. and Jackisch, R. (2006) Presynaptic opioid receptors on noradrenergic and serotonergic neurons in the human as compared to the rat neocortex. Br. J. Pharmacol. 148, 795-806.
30 Dijkstra, G., Blokzijl, H., Bok, L., Homan, M., van Goor, H., Faber, K. N., Jansen, P. L. and Moshage, H. (2004) Opposite effect of oxidative stress on inducible nitric oxide synthase and haem oxygenase-1 expression in intestinal inflammation: anti-inflammatory effect of carbon monoxide. J. Pathol. 204, 296-303.   DOI   ScienceOn
31 Wang, W. P., Guo, X., Koo, M. W., Wong, B. C., Lam, S. K., Ye, Y. N. and Cho, C. H. (2001) Protective role of heme oxygenase-1 on trinitrobenzene sulfonic acid-induced colitis in rats. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G586-594.   DOI
32 Karki, R., Thapa, P., Yoo, H. Y., Kadayat, T. M., Park, P. H., Na, Y., Lee, E., Jeon, K. H., Cho, W. J., Choi, H., Kwon, Y. and Lee, E. S. (2012) Dihydroxylated 2,4,6-triphenyl pyridines: synthesis, topoisomerase I and II inhibitory activity, cytotoxicity, and structure-activity relationship study. Eur. J. Med. Chem. 49, 219-228.   DOI   ScienceOn
33 Cullinan, S. B., Zhang, D., Hannink, M., Arvisais, E., Kaufman, R. J. and Diehl, J. A. (2003) Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol. Cell. Biol. 23, 7198-7209.   DOI   ScienceOn
34 Gibaldi, M. (1993) What is nitric oxide and why are so many people studying it? J. Clin. Pharmacol. 33, 488-496.   DOI
35 Dinkova-Kostova, A. T., Massiah, M. A., Bozak, R. E., Hicks, R. J. and Talalay, P. (2001) Potency of Michael reaction acceptors as inducers of enzymes that protect against carcinogenesis depends on their reactivity with sulfhydryl groups. Proc Natl Acad Sci U.S.A. 98, 3404-3409.   DOI   ScienceOn
36 Foresti, R., Hoque, M., Monti, D., Green, C. J. and Motterlini, R. (2005) Differential activation of heme oxygenase-1 by chalcones and rosolic acid in endothelial cells. J. Pharmacol. Exp. Ther. 312, 686-693.