• Title/Summary/Keyword: JC-algebras

Search Result 4, Processing Time 0.017 seconds

STABILITY OF HOMOMORPHISMS IN BANACH MODULES OVER A C*-ALGEBRA ASSOCIATED WITH A GENERALIZED JENSEN TYPE MAPPING AND APPLICATIONS

  • Lee, Jung Rye
    • Korean Journal of Mathematics
    • /
    • v.22 no.1
    • /
    • pp.91-121
    • /
    • 2014
  • Let X and Y be vector spaces. It is shown that a mapping $f:X{\rightarrow}Y$ satisfies the functional equation ${\ddag}$ $$2df(\frac{x_1+{\sum}_{j=2}^{2d}(-1)^jx_j}{2d})-2df(\frac{x_1+{\sum}_{j=2}^{2d}(-1)^{j+1}x_j}{2d})=2\sum_{j=2}^{2d}(-1)^jf(x_j)$$ if and only if the mapping $f:X{\rightarrow}Y$ is additive, and prove the Cauchy-Rassias stability of the functional equation (${\ddag}$) in Banach modules over a unital $C^*$-algebra, and in Poisson Banach modules over a unital Poisson $C^*$-algebra. Let $\mathcal{A}$ and $\mathcal{B}$ be unital $C^*$-algebras, Poisson $C^*$-algebras, Poisson $JC^*$-algebras or Lie $JC^*$-algebras. As an application, we show that every almost homomorphism $h:\mathcal{A}{\rightarrow}\mathcal{B}$ of $\mathcal{A}$ into $\mathcal{B}$ is a homomorphism when $h(d^nuy)=h(d^nu)h(y)$ or $h(d^nu{\circ}y)=h(d^nu){\circ}h(y)$ for all unitaries $u{\in}\mathcal{A}$, all $y{\in}\mathcal{A}$, and n = 0, 1, 2, ${\cdots}$. Moreover, we prove the Cauchy-Rassias stability of homomorphisms in $C^*$-algebras, Poisson $C^*$-algebras, Poisson $JC^*$-algebras or Lie $JC^*$-algebras, and of Lie $JC^*$-algebra derivations in Lie $JC^*$-algebras.

Injective JW-algebras

  • Jamjoom, Fatmah Backer
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.2
    • /
    • pp.267-276
    • /
    • 2007
  • Injective JW-algebras are defined and are characterized by the existence of projections of norm 1 onto them. The relationship between the injectivity of a JW-algebra and the injectivity of its universal enveloping von Neumann algebra is established. The Jordan analgue of Theorem 3 of [3] is proved, that is, a JC-algebra A is nuclear if and only if its second dual $A^{**}$ is injective.

  • PDF

HYERS-ULAM-RASSIAS STABILITY OF ISOMORPHISMS IN C*-ALGEBRAS

  • Park, Choonkil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.2
    • /
    • pp.159-175
    • /
    • 2006
  • This paper is a survey on the Hyers-Ulam-Rassias stability of the Jensen functional equation in $C^*$-algebras. The concept of Hyers-Ulam-Rassias stability originated from the Th.M. Rassias' stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. Its content is divided into the following sections: 1. Introduction and preliminaries. 2. Approximate isomorphisms in $C^*$-algebras. 3. Approximate isomorphisms in Lie $C^*$-algebras. 4. Approximate isomorphisms in $JC^*$-algebras. 5. Stability of derivations on a $C^*$-algebra. 6. Stability of derivations on a Lie $C^*$-algebra. 7. Stability of derivations on a $JC^*$-algebra.

  • PDF

ON A GENERALIZED TRIF'S MAPPING IN BANACH MODULES OVER A C*-ALGEBRA

  • Park, Chun-Gil;Rassias Themistocles M.
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.323-356
    • /
    • 2006
  • Let X and Y be vector spaces. It is shown that a mapping $f\;:\;X{\rightarrow}Y$ satisfies the functional equation $$mn_{mn-2}C_{k-2}f(\frac {x_1+...+x_{mn}} {mn})$$ $(\ddagger)\;+mn_{mn-2}C_{k-1}\;\sum\limits_{i=1}^n\;f(\frac {x_{mi-m+1}+...+x_{mi}} {m}) =k\;{\sum\limits_{1{\leq}i_1<... if and only if the mapping $f : X{\rightarrow}Y$ is additive, and we prove the Cauchy-Rassias stability of the functional equation $(\ddagger)$ in Banach modules over a unital $C^*-algebra$. Let A and B be unital $C^*-algebra$ or Lie $JC^*-algebra$. As an application, we show that every almost homomorphism h : $A{\rightarrow}B$ of A into B is a homomorphism when $h(2^d{\mu}y) = h(2^d{\mu})h(y)\;or\;h(2^d{\mu}\;o\;y)=h(2^d{\mu})\;o\;h(y)$ for all unitaries ${\mu}{\in}A,\;all\;y{\in}A$, and d = 0,1,2,..., and that every almost linear almost multiplicative mapping $h:\;A{\rightarrow}B$ is a homomorphism when h(2x)=2h(x) for all $x{\in}A$. Moreover, we prove the Cauchy-Rassias stability of homomorphisms in $C^*-algebras$ or in Lie $JC^*-algebras$, and of Lie $JC^*-algebra$ derivations in Lie $JC^*-algebras$.