• Title/Summary/Keyword: J domain

Search Result 843, Processing Time 0.052 seconds

Prediction Model and Numerical Simulation of the Initial Diffusion of Spilled Oil on the Sea Surface (해상누유의 초기확산 예측모델 및 수치추정)

  • Yoon, B.S.;Song, J.U.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.2
    • /
    • pp.104-110
    • /
    • 1997
  • Increase of marine transpotation in coastal area frequently yields oil spill accidents due to collision or grounding of oil tankers, which affects great deal of damages on ocean environments. Exact prediction of oil pollution area in time domain, which is called oil map, is very important for effective and efficient oil recovery and minimization of environmental damage. The prediction is carried out by considering the two distinct processes which are initial diffusion on the still water surface and advection due to tide, wind wave induced surface currents. In the present paper, only the initial diffusion is dealt with. Somewhat new simulation model and its numerical scheme are proposed to predict it. Simple diffusion experiment is also carried out to check the validity of the present method. Furthermore, some example simulations are performed for virtual oil spill accident. Quite realistic oil map including oil thickness distributions can be obtained by the present model.

  • PDF

Reactor core analysis through the SP3-ACMFD approach Part II: Transient solution

  • Mirzaee, Morteza Khosravi;Zolfaghari, A.;Minuchehr, A.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.230-237
    • /
    • 2020
  • In this part, an implicit time dependent solution is presented for the Boltzmann transport equation discretized by the analytic coarse mesh finite difference method (ACMFD) over the spatial domain as well as the simplified P3 (SP3) for the angular variable. In the first part of this work we proposed a SP3-ACMFD approach to solve the static eigenvalue equations which provide the initial conditions for temp dependent equations. Having solved the 3D multi-group SP3-ACMFD static equations, an implicit approach is resorted to ensure stability of time steps. An exponential behavior is assumed in transverse integrated equations to establish a relationship between flux moments and currents. Also, analytic integration is benefited for the time-dependent solution of precursor concentration equations. Finally, a multi-channel one-phase thermal hydraulic model is coupled to the proposed methodology. Transient equations are then solved at each step using the GMRES technique. To show the sufficiency of proposed transient SP3-ACMFD approximation for a full core analysis, a comparison is made using transport peers as the reference. To further demonstrate superiority, results are compared with a 3D multi-group transient diffusion solver developed as a byproduct of this work. Outcomes confirm that the idea can be considered as an economic interim approach which is superior to the diffusion approximation, and comparable with transport in results.

Longitudinal Flight Dynamic Modeling and Stability Analysis of Flapping-wing Micro Air Vehicles (날갯짓 비행 로봇의 세로방향 비행 동역학 모델링 및 안정성 해석)

  • Kim, Joong-Kwan;Han, Jong-Seob;Kim, Ho-Young;Han, Jae-Hung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • This paper investigates the longitudinal flight dynamics and stability of flapping-wing micro air vehicles. Periodic external forces and moments due to the flapping motion characterize the dynamics of this system as NLTP (Non Linear Time Periodic). However, the averaging theorem can be applied to an NLTP system to obtain an NLTI (Non Linear Time Invariant) system which allows us to use a standard eigen value analysis to assess the stability of the system with linearization around a reference point. In this paper, we investigate the dynamics and stability of a hawkmoth-scale flapping-wing air vehicle by establishing an LTI (Linear Time Invariant) system model around a hovering condition. Also, a direct time integration of full nonlinear equations of motion of the flapping-wing micro air vehicle is conducted to see how the longitudinal flight dynamics appear in the time domain beyond the reference point, i.e. hovering condition. In the study, the flapping-wing air vehicle exhibited three distinct dynamic modes of motion in the longitudinal plane of motion: two stable subsidence modes and one unstable oscillatory mode. The unstable oscillatory mode is found to be a combination of a pitching velocity state and a forward/backward velocity state.

Magneto-rheological and passive damper combinations for seismic mitigation of building structures

  • Karunaratne, Nivithigala P.K.V.;Thambiratnam, David P.;Perera, Nimal J.
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1001-1025
    • /
    • 2016
  • Building structures generally have inherent low damping capability and hence are vulnerable to seismic excitations. Control devices therefore play a useful role in providing safety to building structures subject to seismic events. In recent years semi-active dampers have gained considerable attention as structural control devices in the building construction industry. Magneto-rheological (MR) damper, a type of semi-active damper has proven to be effective in seismic mitigation of building structures. MR dampers contain a controllable MR fluid whose rheological properties vary rapidly with the applied magnetic field. Although some research has been carried out on the use of MR dampers in building structures, optimal design of MR damper and combined use of MR and passive dampers for real scale buildings has hardly been investigated. This paper investigates the use of MR dampers and incorporating MR-passive damper combinations in building structures in order to achieve acceptable levels of seismic performance. In order to do so, it first develops the MR damper model by integrating control algorithms commonly used in MR damper modelling. The developed MR damper is then integrated in to the seismically excited structure as a time domain function. Linear and nonlinear structure models are evaluated in real time scenarios. Analyses are conducted to investigate the influence of location and number of devices on the seismic performance of the building structure. The findings of this paper provide information towards the design and construction of earthquake safe buildings with optimally employed MR dampers and MR-passive damper combinations.

REGULARITY AND MULTIPLICITY OF SOLUTIONS FOR A NONLOCAL PROBLEM WITH CRITICAL SOBOLEV-HARDY NONLINEARITIES

  • Alotaibi, Sarah Rsheed Mohamed;Saoudi, Kamel
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.747-775
    • /
    • 2020
  • In this work we investigate the nonlocal elliptic equation with critical Hardy-Sobolev exponents as follows, $$(P)\;\{(-{\Delta}_p)^su={\lambda}{\mid}u{\mid}^{q-2}u+{\frac{{\mid}u{\mid}^{p{^*_s}(t)-2}u}{{\mid}x{\mid}^t}}{\hspace{10}}in\;{\Omega},\\u=0{\hspace{217}}in\;{\mathbb{R}}^N{\backslash}{\Omega},$$ where Ω ⊂ ℝN is an open bounded domain with Lipschitz boundary, 0 < s < 1, λ > 0 is a parameter, 0 < t < sp < N, 1 < q < p < ps where $p^*_s={\frac{N_p}{N-sp}}$, $p^*_s(t)={\frac{p(N-t)}{N-sp}}$, are the fractional critical Sobolev and Hardy-Sobolev exponents respectively. The fractional p-laplacian (-∆p)su with s ∈ (0, 1) is the nonlinear nonlocal operator defined on smooth functions by $\displaystyle(-{\Delta}_p)^su(x)=2{\lim_{{\epsilon}{\searrow}0}}\int{_{{\mathbb{R}}^N{\backslash}{B_{\epsilon}}}}\;\frac{{\mid}u(x)-u(y){\mid}^{p-2}(u(x)-u(y))}{{\mid}x-y{\mid}^{N+ps}}dy$, x ∈ ℝN. The main goal of this work is to show how the usual variational methods and some analysis techniques can be extended to deal with nonlocal problems involving Sobolev and Hardy nonlinearities. We also prove that for some α ∈ (0, 1), the weak solution to the problem (P) is in C1,α(${\bar{\Omega}}$).

THE NAVIER-STOKES EQUATIONS WITH INITIAL VALUES IN BESOV SPACES OF TYPE B-1+3/qq,

  • Farwig, Reinhard;Giga, Yoshikazu;Hsu, Pen-Yuan
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1483-1504
    • /
    • 2017
  • We consider weak solutions of the instationary Navier-Stokes system in a smooth bounded domain ${\Omega}{\subset}{\mathbb{R}}^3$ with initial value $u_0{\in}L^2_{\sigma}({\Omega})$. It is known that a weak solution is a local strong solution in the sense of Serrin if $u_0$ satisfies the optimal initial value condition $u_0{\in}B^{-1+3/q}_{q,s_q}$ with Serrin exponents $s_q$ > 2, q > 3 such that ${\frac{2}{s_q}}+{\frac{3}{q}}=1$. This result has recently been generalized by the authors to weighted Serrin conditions such that u is contained in the weighted Serrin class ${{\int}_0^T}({\tau}^{\alpha}{\parallel}u({\tau}){\parallel}_q)^s$ $d{\tau}$ < ${\infty}$ with ${\frac{2}{s}}+{\frac{3}{q}}=1-2{\alpha}$, 0 < ${\alpha}$ < ${\frac{1}{2}}$. This regularity is guaranteed if and only if $u_0$ is contained in the Besov space $B^{-1+3/q}_{q,s}$. In this article we consider the limit case of initial values in the Besov space $B^{-1+3/q}_{q,{\infty}}$ and in its subspace ${{\circ}\atop{B}}^{-1+3/q}_{q,{\infty}}$ based on the continuous interpolation functor. Special emphasis is put on questions of uniqueness within the class of weak solutions.

A Study on the Stress and Crystal in Die-Upsetted Nd-Fe-B-Cu Alloys as a Function of Working Temperature (가공온도에 따라 다이업셋한 Nd-Fe-B-Cu 합금의 응력과 결정에 관한 연구)

  • Park, J.D.;Yang, H.S.;Kwak, C.S.;Jeung, W.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.1
    • /
    • pp.61-71
    • /
    • 1994
  • This study is to investigate the stress distributions, crystal orientations and magnetic properties during die-upsetting according to working temperature of Nd-Fe-B-Cu alloys. The stress distributions in the specimens during compressing process were calculated by a finite element method program(SPID). The calculated stresses were effective stress (${\sigma}_{eff}$), compression stress(${\sigma}_z$), radial direction stress(${\sigma}_r$) rotational direction stress(${\sigma}_e$) and shear stress(${\tau}_{rz}$). The stress distributions of ${\sigma}_z$, obtained by a computer simulation showed that the stress components causing the magnetic alignment during die-upsetting of the cast magnets were very high at the center-part of a specimen, and decreased toward the periphery-part of a specimen. In view of the above results the magnetic properties should be better at the center-part of a specimen than any other parts. But the measured magnetic properties were better at the mid-part. These results should be due to the fact that the specimens were casted. Normally the magnetic properties are affected by the casting process as well as by the stress levels. ${\sigma}_r$, ${\sigma}_e$ are thought to affect the liquid phase flowing and domain patterns, respectively. The influence of ${\tau}_{rz}$ was trivial, ${\sigma}_{eff}$ distributed similar throughout the specimen. The Nd-rich phase appeared at the peripheral of the specimen where the stress level of ${\sigma}_r$, ${\sigma}_z$, was low or the stress level of ${\sigma}_e$ was high. The Nd-rich phase was squeezed out during die-upsetting. This phase had an effect on the crystal orientation and grain growth. The stress distributions of alloy were irregular at the parts of the specimen where the die contacted with specimen.

  • PDF

The Variation of TiAl microstructure with Ni, Mn alloying and Heat Treatment (Ni, Mn 첨가와 열처리에 따른 TiAl 미세 조직 변화)

  • Moon, J.T.;Lee, S.H.;Han, B.S.;Shin, B.M.;Lee, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.3
    • /
    • pp.181-187
    • /
    • 1997
  • TiAl intermetallic compound was candidated for the application to the high temperature materials such as a gas turbine exhaust valve in the automobile. However, this material dose not have ductility allowing to machinability to product. To improve the ductility, many researches conduct alloy design and heat treatment methods. We observed that the microstructure of TiAl varied with Ni, Mn elements as well as a heat treatment condition. In the case of Ni element addition, the TiAlNi intermetallic compound was precipitated at the grain boundary. When the heat treatment temperature increased from $1000^{\circ}C$ to $1300^{\circ}C$, the TiAlNi intermetallic compound was uniformly dispersed on the matrix. In the case of Mn element addition, the mixed duplex structure of ${\gamma}$-TiAl and lamellar(TiAl/$Ti_3Al$) was obtained with $1250^{\circ}C$ and $1300^{\circ}C$ heat treatment for 1 hour. When the heat treatment temperature increased from $1250^{\circ}C$ to $1300^{\circ}C$, the lamellar domain of the duplex structure was transformed near-lamellar structure.

  • PDF

Parallel lProcessing of Pre-conditioned Navier-Stokes Code on the Myrinet and Fast-Ethernet PC Cluster (Myrinet과 Fast-Ethernet PC Cluster에서 예조건화 Navier-Stokes코드의 병렬처리)

  • Lee, G.S.;Kim, M.H.;Choi, J.Y.;Kim, K.S.;Kim, S.L.;Jeung, I.S.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.21-30
    • /
    • 2002
  • A preconditioned Navier-Stokes code was parallelized by the domain decomposition technique, and the accuracy of the parallelized code was verified through a comparison with the result of a sequential code and experimental data. Parallel performance of the code was examined on a Myrinet based PC-cluster and a Fast-Ethernet system. Speed-up ratio was examined as a major performance parameter depending on the number of processor and the network communication topology. In this test, Myrinet system shows a superior parallel performance to the Fast-Ethernet system as was expected. A test for the dependency on problem size also shows that network communication speed in a crucial factor for parallel performance, and the Myrinet based PC-cluster is a plausible candidate for high performance parallel computing system.

Aerodynamic Shape Optimization of Helicopter Rotor Blades in Hover Using a Continuous Adjoint Method on Unstructured Meshes (비정렬 격자계에서 연속 Adjoint 방법을 이용한 헬리콥터 로터 블레이드의 제자리 비행 공력 형상 최적설계)

  • Lee, S.-W.;Kwon, O.-J.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • An aerodynamic shape optimization technique has been developed for helicopter rotor blades in hover based on a continuous adjoint method on unstructured meshes. The Euler flow solver and the continuous adjoint sensitivity analysis were formulated on the rotating frame of reference for hovering rotor blades. In order to handle the repeated evaluation of the design cycle efficiently, the flow and adjoint solvers were parallelized using a domain decomposition strategy. A solution-adaptive mesh refinement technique was adopted for the accurate capturing of the tip vortex. Applications were made for the aerodynamic shape optimization of Caradonna-Tung rotor blades and UH60 rotor blades in hover. The results showed that the present method is an effective tool to determine optimum aerodynamic shapes of rotor blades requiring less torque while maintaining the desired thrust level.