• Title/Summary/Keyword: Ito process

Search Result 411, Processing Time 0.024 seconds

Inkjet Printable Transparent Conducting Oxide Electrodes

  • Kim, Han-Gi
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.59.2-59.2
    • /
    • 2011
  • We have demonstrated ink-jet printed indium tin oxide (ITO) and indium tin zinc oxide (IZTO) electrodes for cost-efficient organic solar cells (OSCs). By ink-jetting of crystalline ITO nano-particles and performing a rapid thermal anneal at $450^{\circ}C$, we were able to obtain directly patterned-ITO electrodes with an average transmittance of 84.14% and a sheet resistance of 202.7 Ohm/square without using a conventional photolithography process. The OSCs fabricated on the directly patterned ITO electrodes by ink-jet printing showed an open circuit voltage of 0.57 V, short circuit current of 8.47 mA/cm2, fill factor of 44%, and power conversion efficiency of 2.13%. This indicates that the ITO directly-patterned by ink-jet printing is a viable alternative to sputter-grown ITO electrodes for cost-efficient printing of OSCs due to the absence of a photolithography process for patterning and more efficient ITO material usage.

  • PDF

Fabrication and characteristics of ITO thin films on CR39 substrate for transparent OTFT

  • Kwon, Sung-Yeol
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.229-233
    • /
    • 2007
  • The indium tin oxide (ITO) films were deposited on CR39 substrate using DC magnetron sputtering. The ITO thin films deposited at room temperature because CR39 substrate its glass-transition temperature is $130^{\circ}C$. The ITO thin films used bottom and top electrode and for organic thin film transparent transistors (OTFTs). The ITO thin film electrodes electrical properties and optical transparency properties in the visible wavelength range (300-800 nm) strongly dependent on volume of oxygen percent. For the optimum resistivity and transparency of the ITO thin film electrode achieved with a 75 W plasma power, 10 % volume of oxygen and a 27 nm/min deposition rate. Above 85 % transparency in the visible wavelength range (300-800 nm) measured without post annealing process and a low resistivity value $9.83{\times}10^{-4}{\Omega}cm$ was measured thickness of 300 nm. All fabrication process of ITO thin films did not exceed $80^{\circ}C$.

Physical Properties of ITO/PVDF as a function of Oxygen Partial Pressure (산소 분압 조절에 따른 ITO/PVDF 박막 물성 조절 연구)

  • Le, Sang-Yub;Kim, Ji-Hwan;Park, Dong-Hee;Byun, Dong-Jin;Choi, Won-Kook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.10
    • /
    • pp.923-929
    • /
    • 2008
  • On the piezoelectric polymer, PVDF (poly vinylidene fluoride), the transparent conducting oxide (TCO) electrode material thin film was deposited by roll to roll sputtering process mentioned as a mass product-friendly process for display application. The deposition method for ITO Indium Tin Oxides) as our TCO was DC magnetron sputtering optimized for polymer substrate with the low process temperature. As a result, a high transparent and good conductive ITO/PVDF film was prepared. During the process, especially, the gas mixture ratio of Ar and Oxygen was concluded as an important factor for determining the film's physical properties. There were the optimum ranges for process conditions of mixture gas ratio for ITO/PVDF From these results, the doping mechanism between the oxygen atom and the metal element, Indium or Tin was highly influenced by oxygen partial pressure condition during the deposition process at ambient temperature, which gives the conductivity to oxide electrode, as generally accepted. With our studies, the process windows of TCO for display and other application can be expected.

CMP Properties of ITO Thin Film by CMP Process Parameters (공정변수 변화에 따른 ITO 박막의 연마특성)

  • Choi, Gwon-Woo;Kim, Nam-Hoon;Seo, Yong-Jin;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.105-106
    • /
    • 2005
  • As the integrated circuit device shrinks to the smaller dimension, the chemical mechanical polishing (CMP) process has been widely used in microelectronics and semiconductor processes. Indium tin oxide (ITO) thin film was polished by CMP by the change of process parameters for the improvement of CMP performance. Removal rate and planarity were improved after CMP process at the optimized process parameters compared to that before CMP process.

  • PDF

CMP Properties of ITO Thin Film with a Control of Temperature in Pad Conditioning Process (패드 컨디셔닝 온도 변화가 ITO 박막 연마특성에 미치는 영향)

  • Choi, Gwon-Woo;Kim, Nam-Hoon;Seo, Yong-Jin;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.70-71
    • /
    • 2005
  • The material that is both conductive in electricity and transparent to the visible ray is called transparent conducting thin film. It is investigated the performance of ITO-CMP process using commercial silica slurry with the various conditioning temperatures by control of de-ionized water (DIW). Removal rate of ITO thin film was improved after CMP process after pad conditioning at the high temperature by improved exclusion of slurry residues in polishing pad..

  • PDF

Optical and Electrical Properties of ITO/Ni/ITO Thin Films (ITO/Ni/ITO 박막의 광학적 전기적 특성 연구)

  • Kim So-Ra;Seo Jung-Eun;Kim Sang-Ho;Lee In-Seon;Kim Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.2
    • /
    • pp.55-59
    • /
    • 2005
  • ITO/Ni/ITO thin films were deposited on the PET by RF magnetron sputtering. Dependance of the process parameters such as deposition pressure, positions of Ni layer, on the transmittance, reflectance and sheet resistance of ITO/Ni/ITO film were investigated. When the Ni layer is placed at the center of ITO and deposition pressure is low, ITO/Ni/ITO films showed better optical and electrical properties. At these conditions, the transmittance, reflectance and sheet resistance of the ITO film were $90\%,\;0.38\%$ and $185\Omega/\Box$ respectively.

A Study on Characteristics of Self-Contained Three-Dimensional Organic Body found in Architecture of Ito Toyo (이토 토요의 건축에 나타난 자기완결적 3차원 조직체의 특성에 관한 연구)

  • Kim, Jong-Jin
    • Korean Institute of Interior Design Journal
    • /
    • v.26 no.2
    • /
    • pp.55-63
    • /
    • 2017
  • Recent projects of Japanese architect, Ito Toyo have been evolved into innovative and experimental stages that are unique and different from other contemporary architects. Since Ito established his own office in 1971, there were several critical changes and developments in terms of architectural philosophy as well as design methods. Particularly, after Sendai Mediatheque, Ito has tended to focus on creating three-dimensional organic body in which architectural form, space, structure, facilities, images are merged all together. With this new type of three-dimensional structure, Ito aims to generate a new notion of architecture as 'living organism'. This paper tried to analyze Ito's new concept of architecture, design process of three-dimensional organic body and its ultimate characteristics and meanings. For the analysis, three projects were selected: Taichung Metropolitan Opera House(2005), Berkeley Art Museum and Pacific Film Archive(2007), The New Deichman Library in Oslo(2008). These projects clearly represent several types of three-dimensional organic body. After the comparative studies, it is found that, in Ito's design process and method, there are unique characters: ambivalent relationship between plan and three-dimensional form, aiming new/hyper reality through complicated collaboration of analogue and digital design tools, and contradictory relationship with surrounding urban context. Although there are some limitations and restrictions, ever-evolving Ito's design concept and methods are very much valid and meaningful in contemporary spatial design in various perspectives.

Feasibility of Indium Tin Oxide (ITO) Swarf Particles to Transparent Conductive Oxide (TCO)

  • Hong, Sung-Jei;Yang, DuckJoo;Cha, Seung Jae;Lee, Jae-Yong;Han, Jeong-In
    • Current Photovoltaic Research
    • /
    • v.3 no.2
    • /
    • pp.50-53
    • /
    • 2015
  • Indium (In) is widely used for transparent electrodes of photovoltaics as a form of indium tin oxide (ITO) due to its superior characteristics of environmental stability, relatively low electrical resistivity and high transparency to visible light. However, In has been worn off in proportion to growth the In related market, and it leads to raise of price. Although In is obtained from ITO target scarps, much harmful elements are used for the recycling process. To decrease of harmful elements, ITO swarf particles obtained from target scraps was characterized whether it is feasible to transparent conductive oxide (TCO). The ITO swarf was crushed with milling process, and it was mixed with new ITO nanoparticles. The mixed particles were well dispersed into ink solvent to make-up an ink, and it was well coated onto glass substrate. After heat-treatment at $400^{\circ}C$ under $N_2$ rich environments, optical transmittance at 550 nm and sheet resistance of the ITO ink coated layer was 71.6% and $524.67{\Omega}/{\square}$, respectively. Therefore, it was concluded that the ITO swarf was feasible to TCO of touch screen panel.

Evaluations of Life Cycle Assessment on Indium-Tin-Oxide Electrochemical Recycling Process (디스플레이 투명전극용 인듐-주석-산화물의 전기화학적 재활용 공정에 관한 전과정 평가)

  • Kim, Raymund K.I.;Lee, Na-Ri;Lee, Soo-Sun;Lee, Young-Sang;Hong, Sung-Jei;Son, Young-Keun;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.388-392
    • /
    • 2013
  • Iindium-tin-oxide (ITO) material was had to use in display application as transparent electrode. However it would be problems comes up, the depletion of indium, tin and energy consumption of production process. Therefore recently trend was demanded alternative ITO material and recycling/reused ITO. In this conditions, the environmental impact have to express correct value about recycling/reused ITO process. The life cycle assessment was valuable method in this process. Thus first step was carried out separating in/out put (material) sources and then, exactive data base (DB) was applied. The result of environment impact was calculated by affect categories and recycling rate was set to 34% (This value was measured in previous project). The rate (g) of ITO material was calculated by chemical equivalent. In result, environmental impact were revealed acidification potential and abiotic depletion and if do not recycle/reuse ITO, $ 476 per 1 ton waste in land.