• Title/Summary/Keyword: Iterative technique

Search Result 568, Processing Time 0.033 seconds

Assessment of Acoustic Iterative Inverse Method for Bubble Sizing to Experimental Data

  • Choi, Bok-Kyoung;Kim, Bong-Chae;Kim, Byoung-Nam;Yoon, Suk-Wang
    • Ocean Science Journal
    • /
    • v.41 no.4
    • /
    • pp.195-199
    • /
    • 2006
  • Comparative study was carried out for an acoustic iterative inverse method to estimate bubble size distributions in water. Conventional bubble sizing methods consider only sound attenuation for sizing. Choi and Yoon [IEEE, 26(1), 125-130 (2001)] reported an acoustic iterative inverse method, which extracts the sound speed component from the measured sound attenuation. It can more accurately estimate the bubble size distributions in water than do the conventional methods. The estimation results of acoustic iterative inverse method were compared with other experimental data. The experimental data show good agreement with the estimation from the acoustic iterative inverse method. This iterative technique can be utilized for bubble sizing in the ocean.

A Modified Iterative N-FINDR Algorithm for Fully Automatic Extraction of Endmembers from Hyperspectral Imagery (초분광 영상의 endmember 자동 추출을 위한 수정된 Iterative N-FINDR 기법 개발)

  • Kim, Kwang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.5
    • /
    • pp.565-572
    • /
    • 2011
  • A modified iterative N-FINDR algorithm is developed for fully automatic extraction of endmembers from hyperspectral image data. This algorithm exploits the advantages of iterative NFINDR technique and Iterative Error analysis technique. The experiments using a simulated hyperspectral image data shows that the optimum number of endmembers can be automatically decided. The extracted endmembers and finally generated abundance fraction maps show the potentialities of the proposed algorithm. More studies are needed for verification of the applicability of the algorithm to the real hyperspectral image data where the absence of pure pixels is common.

Advances in solution of classical generalized eigenvalue problem

  • Chen, P.;Sun, S.L.;Zhao, Q.C.;Gong, Y.C.;Chen, Y.Q.;Yuan, M.W.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.211-230
    • /
    • 2008
  • Owing to the growing size of the eigenvalue problem and the growing number of eigenvalues desired, solution methods of iterative nature are becoming more popular than ever, which however suffer from low efficiency and lack of proper convergence criteria. In this paper, three efficient iterative eigenvalue algorithms are considered, i.e., subspace iteration method, iterative Ritz vector method and iterative Lanczos method based on the cell sparse fast solver and loop-unrolling. They are examined under the mode error criterion, i.e., the ratio of the out-of-balance nodal forces and the maximum elastic nodal point forces. Averagely speaking, the iterative Ritz vector method is the most efficient one among the three. Based on the mode error convergence criteria, the eigenvalue solvers are shown to be more stable than those based on eigenvalues only. Compared with ANSYS's subspace iteration and block Lanczos approaches, the subspace iteration presented here appears to be more efficient, while the Lanczos approach has roughly equal efficiency. The methods proposed are robust and efficient. Large size tests show that the improvement in terms of CPU time and storage is tremendous. Also reported is an aggressive shifting technique for the subspace iteration method, based on the mode error convergence criteria. A backward technique is introduced when the shift is not located in the right region. The efficiency of such a technique was demonstrated in the numerical tests.

ON THE GENERALIZED SET-VALUED MIXED VARIATIONAL INEQUALITIES

  • Zhao, Yali;Liu, Zeqing;Kang, Shin-Min
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.3
    • /
    • pp.459-468
    • /
    • 2003
  • In this paper, we introduce and study a new class of the generalized set-valued mixed variational inequalities. Using the resolvent operator technique, we construct a new iterative algorithm for solving this class of the generalized set-valued mixed variational inequalities. We prove the existence of solutions for the generalized set-valued mixed variational inequalities and the convergence of the iterative sequences generated by the algorithm.

CONVERGENCE OF AN ITERATIVE ALGORITHM FOR SYSTEMS OF GENERALIZED VARIATIONAL INEQUALITIES

  • Jeong, Jae Ug
    • Korean Journal of Mathematics
    • /
    • v.21 no.3
    • /
    • pp.213-222
    • /
    • 2013
  • In this paper, we introduce and consider a new system of generalized variational inequalities involving five different operators. Using the sunny nonexpansive retraction technique we suggest and analyze some new explicit iterative methods for this system of variational inequalities. We also study the convergence analysis of the new iterative method under certain mild conditions. Our results can be viewed as a refinement and improvement of the previously known results for variational inequalities.

Realization of a neural network controller by using iterative learning control (반복학습 제어를 사용한 신경회로망 제어기의 구현)

  • 최종호;장태정;백석찬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.230-235
    • /
    • 1992
  • We propose a method of generating data to train a neural network controller. The data can be prepared directly by an iterative learning technique which repeatedly adjusts the control input to improve the tracking quality of the desired trajectory. Instead of storing control input data in memory as in iterative learning control, the neural network stores the mapping between the control input and the desired output. We apply this concept to the trajectory control of a two link robot manipulator with a feedforward neural network controller and a feedback linear controller. Simulation results show good generalization of the neural network controller.

  • PDF

REGULARIZED MIXED QUASI EQUILIBRIUM PROBLEMS

  • Noor Muhammad Aslam
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.183-191
    • /
    • 2007
  • In this paper, we introduce and study a new class of equilibrium problems, known as regularized mixed quasi equilibrium problems. We use the auxiliary principle technique to suggest and analyze some iterative schemes for regularized equilibrium problems. We prove that the convergence of these iterative methods requires either pseudomonotonicity or partially relaxed strongly monotonicity. Our proofs of convergence are very simple. As special cases, we obtain earlier results for solving equilibrium problems and variational inequalities involving the convex sets.

GENERAL NONLINEAR RANDOM SET-VALUED VARIATIONAL INCLUSION PROBLEMS WITH RANDOM FUZZY MAPPINGS IN BANACH SPACES

  • Balooee, Javad
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.243-267
    • /
    • 2013
  • This paper is dedicated to study a new class of general nonlinear random A-maximal $m$-relaxed ${\eta}$-accretive (so called (A, ${\eta}$)-accretive [49]) equations with random relaxed cocoercive mappings and random fuzzy mappings in $q$-uniformly smooth Banach spaces. By utilizing the resolvent operator technique for A-maximal $m$-relaxed ${\eta}$-accretive mappings due to Lan et al. and Chang's lemma [13], some new iterative algorithms with mixed errors for finding the approximate solutions of the aforesaid class of nonlinear random equations are constructed. The convergence analysis of the proposed iterative algorithms under some suitable conditions are also studied.

A Practical Method for Estimating High-Energy X-Ray Spectra Using the Iterative Perturbation Principle of Waggener

  • Iwasaki, Akira;Matsutani, Hideya;Kubota, Mamoru;Fujimori, Akira;Suzaki, Katsumasa;Abe, Yoshinao
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.263-266
    • /
    • 2002
  • We have developed a practical method for estimating high-energy x-ray spectra using measured attenuation curves. This method is based on the iterative perturbation technique proposed by Waggener et al. The principle is to minimize the difference between the measured and calculated transmission curves. The experimental study was made using 4 MV, 10 MV, and 15 MV x-ray beams. It has been found that the spectrum varies strongly with the off-axis distance.

  • PDF