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ON THE GENERALIZED SET-VALUED
MIXED VARIATIONAL INEQUALITIES

YALI ZHAO, ZEQING LI1U AND SHIN MIN KANG

ABSTRACT. In this paper, we introduce and study a new class of
the generalized set-valued mixed variational inequalities. Using
the resolvent operator technique, we construct a new iterative al-
gorithm for solving this class of the generalized set-valued mixed
variational inequalities. We prove the existence of solutions for the
generalized set-valued mixed variational inequalities and the con-
vergence of the iterative sequences generated by the algorithm.

1. Introduction

Variational inequality theory provides us a unified framework for deal-
ing with a wide class of problems arising in elasticity, structural analy-
sis, economics, physical and engineering sciences, etc. (see [1]-[3], [5]-[7],
[9] and the references therein). A useful and important generalization
of variational inequalities is a mixed variational inequality containing
a nonlinear term. Inspired and motivated by recent research work in
[1]-[3], [5]-[7], [9] in this paper, we introduce and study the generalized
set-valued mixed variational inequalities and construct a new iterative
algorithm. We prove the existence of solutions for our variational in-
equalities and the convergence of the iterative sequences generated by
the algorithm. Among the special cases of the obtained results are the
corresponding results in [1], [2], [5]-[7], [9] and others.
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2. Preliminaries

Let H be a real Hilbert space whose norm and inner product are
denoted by || - || and (-, ), respectively. Let O¢ denote the subdifferen-
tial of a proper, convex and lower function ¢ : H x H — R U {+o00}.
Given multivalued mappings M, S,T : H — 2H where 27 denotes the
family of nonempty subsets of H and single-valued mapping g : H — H
with g(H) N dom 8¢(-,y) # @ for each y € H and a nonlinear mapping
N(:,-,): Hx Hx H — H, we consider the following problem:

Find z € H, u € Mz, w € Sr and z € Tz such that g(z) N
dom 9¢(-,y) # 0 and

(2.1) (N(u,w,z),y — g(x)) > p(g(x),z) — #(y,z), y€H.

Problem (2.1) is called the generalized nonlinear set-valued mized vari-
ational inequality.

If N(u,w,z) = u— (w— z) for all u,w,z € H, then problem (2.1) is
equivalent to finding z € H, u € Mz, w € Sz and z € Tz such that
g(z) N dom 8¢(-,y) # B and

(2.2) (u—(w—2),y—g(x)) > #(9(z),z) — #(y,z), y€H.

Problem (2.2) is called the nonlinear mized variational inequality, which
appears to be a new one.

If M, S and T are single-valued mappings, then problem (2.1) is equiv-
alent to finding z € H such that g(z) N dom d¢(-,y) # 0 and

(2.3) (N(Mwz,S2,Tz),y — g(z)) = ¢(9(z),z) — d(y,2), yeH.

This problem is called the generalized mized variational inequality.

If N(z,y,2z) = N(z,y) and ¢(z,y) = ¢(z) for all z,y,z € H, then
problem (2.1) reduces to finding z € H, u € Mz and w € Sz such that
g(x) Ndom 8¢ (z) # @ and

(2.4) (N(u,w),y — g(z)) > ¢(g(z)) — d(y), y€H.

Problem (2.4) is called the generalized set-valued mized variational in-
equality, which was studied by Noor, Noor and Rassias [5]. It is known
that a number of problems involving mechanics, economics and opti-
mization theory can be studied via problem (2.4), see for example [5],
[8] and the references therein.
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In a brief, for a suitable choice of the mappings M, S, T, N, g, ¢
and the space H, one can obtain a number of known and new classes of
variational inequalities and related problems from the generalized non-
linear set-valued mixed variational inequality (2.1). Further, these types
of variational inequalities enable us to study many important problems
arising in mathematical, regional, physical and engineering sciences in a
general and unified framework.

DerINITION 2.1. ([1], [8]) If G : H — 2 is a maximal monotone
multivalued mapping, then for any fixed p > 0, the mapping JPG H—
H defined by

JS(x) =T +pG) Nz), z€H

is said to be the resolvent operator of index p of G, where I is the identity
mapping on H. Furthermore, the resolvent operator .J pG is single-valued
and nonexpansive, that is,

177 @) = I < e —yl, =yeH

Since the subdifferential d¢ of a proper, convex and lower semicontin-
uous function ¢ : H — RU {400} is a maximal monotone multivalued
mapping, it follows that the resolvent operator Jf¢’ of index p of 9¢ is
given by

J§¢(m) = (I +p0p)~*(x), zcH.

DEFINITION 2.2. A set-valued mapping S : H — CB(H) is said be
(i) H-Lipschitz continuous if there exists a constant h > 0 such that

H(Sm1,5m2)§h|lx1~w2|l, xiEH,i=1,2,

where CB(H) is the family of all nonempty closed bounded subsets of
H, and H(:,-) denotes the Hausdorff metric.

(ii) strongly monotone with respect to the first argument of N : H x
H x H — H if there exists a constant ¢ > 0 such that
<CL'1 — T2, N(UJl, ) ) - N(w27 %y )>
> C“l'l—.TQHZ, Ty EH’ w165$1,1=1,2
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DEFINITION 2.3. A mapping g : H — H is said to be
(i) strongly monotone if there exists a constant r > 0 such that

(9(z1) — g(z2), 21 — @2) 2 rllar — z2|?, 2 € H,i=1,2.
(i1) Lipschitz continuous if there exists a constant s > 0 such that

llg(z1) — g(@2)|| < sllwy — x|, z:€ H,i=1,2.

DEFINITION 2.4. A mapping N(-,-,-) : H x H x H — H is said to
be Lipschitz continuous with respect to the first argument if there exists
a constant a > 0 such that

“N(ajl"") - N(mQa"')H < O‘Hxl - 2132“, Ti € H» 1=1,2.

In a similar way, we can define the Lipschitz continuity of the map-
ping N(-,-,-) with respect to the second argument and third arguments
respectively.

The following lemma plays a crucial role in the proof of our result.

LEMMA 2.1. Elements x € H, v € Mz, w € Sx and z € Tx with
g(z) N domd¢(-,y) # O are a solution of problem (2.1) if and only if
re€ H ue Mz, w € Sz and z € Tz satisfy the following relation

(2.5) g(z) = JP*UPg(x) — pN(u, w, 2)),
where p > 0 is a constant, J;,%("z) = (I + p0¢(-,x))~! is the resolvent
operator of index p of d¢(-,x) and [ is the identity operator on H.

PROOF. From the definition of the resolvent operator J,? ¢C:2) of index
p of 8¢(-,z) it follows that relation (2.5) with z € H, u € Mz, w € Sz
and z € Tz holds if and only if

g(z) ~ pN(u,w, 2) € g(z) + pd¢(g(z), z),
which is equivalent to
~N(u,w, z) € ¢(g(x), x).

From the definition of 9¢(-,z), we know that the above relation is
satisfied if and only if ¢ € H, u € Mz, w € Sz and z € Tz with
g(z) N dom 8¢(-,y) # 0 and (2.1) holds. This completes the proof. [
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REMARK 2.1. Lemma 2.1 extends Lemma 3.1 in [1], Lemma 2.1 in
[2] and Lemma 3.1 in [6].

REMARK 2.2. From Lemma 2.1, we see that problem (2.1) is equiv-
alent to the fixed point problem of the type

(2.6) z € F(z),
where

F(x) = UuEMa: UwGSx UzETz{x - g(x) + Jg(ﬁ(.’z) [g(x) - pN(ua w, Z)]}

Based on (2.5) and (2.6) and Nadler’s result, we suggest the following
iterative algorithm.

ALGORITHM 2.1. Let g: H — H be single-valued mapping, S, T, M :
H — CB(H) be multivalued mappings and N(-,-,+) : Hx HxH — H be
a nonlinear mapping. For given zy € H, we can obtain sequences{zy},

{un}, {wn} and {z,} as

Tpi1 = Tn — g(Tp) + J,?¢("m")[g(xn) — PN (un, Wn, 2n)],
Up € Mz, |ty — un_y| < (L +n"HNH(Mzy,, Mz, _1),
W € STy |wn — wo_1|| £ (1 +n"Y)H(Sz,, ST0 1),
2n € Txpy N2 — 2noa|| S U+ YH T2y, T 1)

(2.7)

for n > 0, where p > 0 is a constant.

REMARK 2.3. For appropriate and suitable choice of the mappings
M, S, T, N, g, ¢ and the space H, one can obtain a number of new and
known iterative algorithms from Algorithm 2.1, for example, see [1]-[3],
[B)-[7], [9] and the references therein.

3. Convergence result

In this section, we study the existence of solutions for the generalized
nonlinear set-valued mixed variational inequality (2.1) and the conver-
gence of the iterative sequences generated by Algorithm 2.1.

THEOREM 3.1. Let g : H — H be strongly monotone and Lipschitz
continuous with constants r and s, respectively and M,5,T : H —



464 Yali Zhao, Zeqing Liu and Shin Min Kang

CB(H) be H-Lipschitz continuous with constants g,h and d, respec-
tively. Let N(-,-,-)H x H x H — H be Lipschitz continuous with re-
spect to the first, second and third arguments with constants a, 8 and
~, respectively. Let M be strongly monotone with respect to the first
argument of N with constant ¢, and let ¢ : H x H — RU {400} be
such that for each fixed y € H, ¢(-,y) is a proper, convex and lower
semicontinuous function on H, g(H) N dom 8¢(-,y) # O and for each
T,y,2 € H,

(3.1) 172#02)(z) = J3*09 (2)]| < pllz -y,

where p > 0 is a constant. Suppose that there exists a constant p > 0
such that

(3.2) p(Bh+~d) <1—t, t=2y1-2r+s?

and one of the following relations

aq > Bh+ vd,
lc — (Bh +vd)(1 — 1) > V(2 — t)(a2¢® — (Bh + vd)?),
(3.3) = (Bht+yd)(1-1)

a?q? — (Bh + vd)?

_ {le— (Bh+ @)1 — ) — 2 — )[a®¢® — (Bh+ ) }/?.
a2 — (B + 1d)? ’

aq = Bh+ ~vd,
20lc — (Bh+yd)(1 —t)) > t(2—1), ¢> (Bh+~d)(1 —1);

agq < Bh+ vd,

. (Bh+~vd)(1 —t) —c
(3.5) (Bh + vd)? — o2¢?

5 i(eh + yd)(1 —t) = ? +¢(2 — 1)[(Bh + vd)* — *¢*]}/?
(Bh +~d)? — a?q?

is satisfied. Then there exist x € H, u € Mz, w € Sz and z € Tz,
which are a solution of problem (2.1) and x, — z, U, — u, w, — w and
Zn — 2 a8 n — 00, where {z,.}, {un}, {wn} and {z,} are the sequences
defined in Algorithm 2.1.
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ProoF. From (2.7), we have

“mTH-l - xn” = ||33n —Tp—1— (g(wn) - g(xn—l))

+ IR0 () — TR (h(zn)),

where h(z,,) = g(zn) — pN (tn, Wy, 2,). Since the resolvent operator J ,‘?"5
is nonexpansive, by (3.1) we have

|729C20) (B(z)) — J2PCTn 1) (R 1))
< T2 (h(@n)) = JP0") (h(mn-1))
+ || 7920 (B 1)) — JEOC=n =) (A(zn1))|
< Mzn) = Mzn-1)l| + pllzn — -1l

(3.7)

and
1A(zn) = A(zn-1)|]
= [lg(zn) — PN (Un, wn, 2n) — 9(Tn-1) + PN (Un—1, Wn—1, 2n—1)||
< flzn = Zn-1 = (9(zn) — g(@n-1))ll
+ |zn = Tn—1 = p(N (un, Wn, 2n) — N(tn-1,Wn, 25)) |l
+ plIN (Un-1,Wn, 2n) = N(Un—1, Wn—1, 2n) ||

+ [N (Un—1, Wn—1,2n) = N(tUp—1,Wn—1, 2n—1)|l-

(3.8)

By the Lipschitz continuity and strong monotonicity of g, we get that
(3.9) llzn = zn-1 = (9(zn) = g(@n-1)lI* < (1 = 2r + 8*)[|zn — @01

Since M, S and T are H-Lipschitz continuous, and N(-,-,-) is Lipschitz
continuous with respect to the first, second and third arguments, respec-
tively, we obtain that

[N (Un—1,Wn, 2n) = N(tn-1,Wn—1, 2n)||
< /Bh(l + n_l)[lxn - wn—llla

HN(un—l,wn——la Z’n) - N(un—la Wn—1, Zn—l)”

3.10
G100 a1+ on =zl

”N(un7wn7 Zn) - N(un—lywn, Zn)“

< ag(l+ n_1)||a:n — Zp-1]|-
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Further, by the strong monotonicity of M with respect to the first ar-
gument of N(,,-), we have

(3 11) “xn —Tp-1— p(N(un’ Wn, zn) - N(un—lawny zn))||2
' < (1-2pc+ p* PP (1 +n7")?)|zn — zoa .
It follows from (3.6)-(3.11) that

(3.12) [Zn+1 = Zall < Onllzn — zn-all,

where

O, =t +/1—2pc+ p202q2(1 +n=1)2 + p(Bh +vd)(1 +n ).

Let 6 = t + /1 —2pc+ p?a2q® + p(Bh + vd). We know that 6, | @
as n — oco. It follows from (3.2) and one of the relations (3.4)-(3.6)
that § < 1. Hence 8, < 1 for n sufficiently large. Therefore (3.12)
implies that {z,} is a Cauchy sequence in H and we can suppose that
z, — z € H. In addition, we can easily obtain that {u,}, {w,} and
{zn} are Cauchy sequences in H from Algorithm 2.1. Let u, — w,
Wy, — W, Zn, — 2 a8 . — 00. It is easy to see that

d(u, Mz) = inf{|ju — y|| : y € Mz} < |lu — un|| + d(un, Mz)
< lu — un|| + H(Mzn, Mz) < [lu—un| + qllz — zn ||
—0

as n — oo. Hence u € Mz. Similarly, we have w € Sz, z € T'z. Since

||J;?¢(’Yxn)[g(xn) — PN (U, wn, 2n)] — ngb(-,z) [9(z) — pN (u, w, Z)]”
< || 72¢C=) g(@n) — PN (tn, Wiy 20)] — 220D g ()
— PN (Un, Wn, Zn)]” + ||J;?¢(.’z) [9(zn) — N (un, wn, Zn)]
— J9*0") [g(x) — pN (u, w, 2)]|
< pllzn — 2zl + g(zn) — 9@ + PIN (Un, wn, 20) — N(u, wn, 2z
+ pl| N (w, Wn, 2) — N(u, w, 2n)|| + pl|N (v, w, 2,) — N(u,w, 2)||
< (e + s)llza — 2l + pallun —ull + pBllwn — wll + pyllzn — 2|

— 0
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as n — oc. It follows that

Jim J2C5g(n) = pN (i, w0, 20)

(3.13)
= JE¢("w)[g(w) — pN(u,w, 2)].

By virtue of (2.7) and (3.13), we have
z =2z —g(z) + J;?0Pg(z) - pN(u,w, 2))] € N(z).

From the above equality and Remark 2.1 it follows that x € H, u € Mz,
w € Sz and z € Tz with g(z) N dom d¢(-,y) # B are a solution of
problem (2.1). This completes the proof. O

REMARK 3.1. Theorem 3.1 extends and improves Theorem 4.1 in
[1], Theorem 3.1 in [2], Theorem 3.1 in [5], Theorems 3.1 and 3.2 in [6],
Theorem 3.1 in [7] and Theorem 3.1 in [9].
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