DOI QR코드

DOI QR Code

A Modified Iterative N-FINDR Algorithm for Fully Automatic Extraction of Endmembers from Hyperspectral Imagery

초분광 영상의 endmember 자동 추출을 위한 수정된 Iterative N-FINDR 기법 개발

  • Received : 2011.09.09
  • Accepted : 2011.10.11
  • Published : 2011.10.31

Abstract

A modified iterative N-FINDR algorithm is developed for fully automatic extraction of endmembers from hyperspectral image data. This algorithm exploits the advantages of iterative NFINDR technique and Iterative Error analysis technique. The experiments using a simulated hyperspectral image data shows that the optimum number of endmembers can be automatically decided. The extracted endmembers and finally generated abundance fraction maps show the potentialities of the proposed algorithm. More studies are needed for verification of the applicability of the algorithm to the real hyperspectral image data where the absence of pure pixels is common.

본 연구에서는 초분광영상의 분광혼합분석을 위한 endmember를 효율적으로 추출할 수 있는 알고리즘을 개발하였다. 본 기법은 N-FINDR기법의 장점과 IEA기법의 장점을 혼합한 형태로서, 추출하고자하는 endmemebr의 개수 등 사전 입력변수를 전혀 요구하지 않는다. 또한 반복계산 과정에서 단계별로spectral unmixing을 수행하므로 endmember별 abundance fraction을 최종 결과물로 생성한다. USGS의 분광라이브러리를 이용하여 생성한 모의 초분광 영상자료에의 시험적용 결과, endmember의 개수와 반사특성, abundance fraction이 매우 정확하게 추출되고 있음을 확인할 수 있었다. 향후, 영상 영역 내에 단일 물질로 순수하게 100% 피복된 pure pixel이 존재하지 않는 경우가 흔히 발생하는 실제 초분광 영상자료에의 적용성 시험을 위한 연구가 진행될 예정이다.

Keywords

References

  1. 신정일, 김선화, 윤정숙, 김태근, 이규성, 2006. 도시지역의 수문학적 토지피복 분류를 위한 초분광영상의 분광혼합분석, 대한원격탐사학회지, 22(6): 565-574. https://doi.org/10.7780/kjrs.2006.22.6.565
  2. 신정일, 김선화, 이규성, 2010. 한반도 지역의 지표특성을 고려한 분광라이브러리의 설계 및 구축, 대한원격탐사학회지, 26(5): 465-475. https://doi.org/10.7780/kjrs.2010.26.5.465
  3. Baldrige, A.M., S.J. Hook, C.I. Grove, and G. Rivera, 2009. The ASTER spectral Library Version 2.0, Remote Sensing of Environment, 113(4): 711-715. https://doi.org/10.1016/j.rse.2008.11.007
  4. Boarderman, J.W., F.A. Kruse, and R.O. Green, 1995. Mapping target signature via partial unmixing of AVIRIS data, Summaries of the VI JPL Airborne Earth Science Workshop, Pasadena, CA.
  5. Bowles, J., D. Gillis, and P. Palmadesso, 2000. New improvements in the ORASIS algorithm, Proc. IEEE Aerospace Conference, Big Sky, MT.
  6. Chang, C.-I, C.C. Wu, C.S. Lo, and M.L. Chang, 2010. Real-time simplex growing algorithms for hyperspectral endmember extraction, IEEE Geosci. Remote Sens., 48(4): 1834-1850. https://doi.org/10.1109/TGRS.2009.2034979
  7. Clark, R.N., G.A. Swayze, A.J. Gallagher, T.V.V. King, and W.M. Calvin, 1993. The U. S. Geological Survey, Digital Spectral Library: Version 1: 0.2 to 3.0microns, U.S. Geological Survey Open File Report, pp. 93-592,
  8. Jia, S. and Y. Qian, 2009. Constrained nonnegative matrix factorization for hyperspectral unmixing, IEEE Geosci. Remote Sens., 47(1): 161-173. https://doi.org/10.1109/TGRS.2008.2002882
  9. Mei, S. and He M., 2010. Spatial purity based endmember extraction for spectral mixture analysis, IEEE Geosci. Remote Sens., 48(9): 3434-3445. https://doi.org/10.1109/TGRS.2010.2046671
  10. Neville, R.A,, K. Staennz, T. Szeredi, J. Lefebvre, and P. Hauff, 1999. Automatic endmember extraction from hyperspectral data for mineral exploration, Proc. 21st Can. Symp. Remote Sensing, Ottawa, ON, Canada, 21-24.
  11. Plaza, A., P. Martinez, R. Perez, and J. Plaza, 2002. Spatial/spectral endmember extraction by multidimensional morphological operations, IEEE Geosci. Remote Sens., 40(9): 2025-2041. https://doi.org/10.1109/TGRS.2002.802494
  12. Plaza, A., P. Martinez, R. Perez, and J. Plaza, 2004. Quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data, IEEE Geosci. Remote Sens., 42(3): 650-663. https://doi.org/10.1109/TGRS.2003.820314
  13. Plaza, A., J.J. Sanchez-Testal, J. Plaza, and D. Valencia, 2005. An experimental evaluation of endmember generation algorithms, Proc. of SPIE, 5995.
  14. Plaza, A. and C.-I. Chang, 2005. An improved NFINDR algorithm in implementation, Proc. SPIE Symp. Defense and Security, Orlando, FL., 5806.
  15. Ronen G., B. Eyal, B. Michael, A. Dov, A. Michael, and K. Alem, 2007. Hyperspectral remote sensing as a tool for geological explorationexamples from the northern Danakil depression, Eritrea, Proc. of 5th EARSel, Bruges, Belgium:1-14.
  16. Winter, M.E., 1999. N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data, Proc. SPIE, 3753: 266-275.
  17. Wu, C.C., S. Chu, and C.-I. Chang, 2008. Sequential N-FINDR algorithm, Proc. SPIE Conf. Imaging Spectrometry XIII, San Diego, CA.
  18. Zortea, M. and A. Plaza, 2009. A quantitative and comparative analysis of different implementations of N-FINDR: a fast endmember extraction algorithm, IEEE Geosci. Remote Sens. Lett., 6(4): 787-791. https://doi.org/10.1109/LGRS.2009.2025520

Cited by

  1. Accuracy Evaluation of Supervised Classification about IKONOS Imagery using Mixed Pixels vol.13, pp.6, 2012, https://doi.org/10.5762/KAIS.2012.13.6.2751
  2. Applicability Evaluation of Endmember Extraction Algorithms on the AISA Hyperspectral Images vol.29, pp.5, 2013, https://doi.org/10.7780/kjrs.2013.29.5.8
  3. Spectral Mixture Analysis Using Modified IEA Algorithm for Forest Classification vol.30, pp.2, 2014, https://doi.org/10.7780/kjrs.2014.30.2.5
  4. 초분광 영상자료의 Endmember 추출 속도 향상에 관한 연구 vol.28, pp.4, 2011, https://doi.org/10.7780/kjrs.2012.28.4.1
  5. 초분광영상에 대한 표적탐지 알고리즘의 적용성 분석 vol.28, pp.4, 2011, https://doi.org/10.7780/kjrs.2012.28.4.3
  6. 산림지역의 항공기 탑재 하이퍼스펙트럴 영상에 대한 식생-Endmember와 식생지수의 상관 분석 vol.15, pp.3, 2011, https://doi.org/10.11108/kagis.2012.15.3.052
  7. 초분광 항공원격탐사 테스트베드 구축 및 시험자료 획득 vol.29, pp.2, 2013, https://doi.org/10.7780/kjrs.2013.29.2.1