• Title/Summary/Keyword: Iteration Method

Search Result 1,145, Processing Time 0.027 seconds

Multi-dimensional sensor placement optimization for Canton Tower focusing on application demands

  • Yi, Ting-Hua;Li, Hong-Nan;Wang, Xiang
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.235-250
    • /
    • 2013
  • Optimal sensor placement (OSP) technique plays a key role in the structural health monitoring (SHM) of large-scale structures. According to the mathematical background and implicit assumptions made in the triaxial effective independence (EfI) method, this paper presents a novel multi-dimensional OSP method for the Canton Tower focusing on application demands. In contrast to existing methods, the presented method renders the corresponding target mode shape partitions as linearly independent as possible and, at the same time, maintains the stability of the modal matrix in the iteration process. The modal assurance criterion (MAC), determinant of the Fisher Information Matrix (FIM) and condition number of the FIM have been taken as the optimal criteria, respectively, to demonstrate the feasibility and effectiveness of the proposed method. Numerical investigations suggest that the proposed method outperforms the original EfI method in all instances as expected, which is looked forward to be even more pronounced should it be used for other multi-dimensional optimization problems.

An Improved Initial Force Method for Determining the Initial Configuration of Suspension Bridges (현수교 시스템의 초기형상 결정을 위한 개선된 초기부재력법)

  • Kim, Min;Kim, Ho-Kyung;Kim, Moon-Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.237-247
    • /
    • 2011
  • This paper presents an improved initial force method for determining the initial shape of suspension bridges. After determining the initial shape factors through the force equilibrium conditions of each hanging point, the initial force method was applied with the computed values, each node's coordinates, and unstrained lengths of the cable element as inputs. The unstrained length of each cable element was regarded as a fixed value in each iteration step, unlike in the typical initial force method. This method can be applied to 2D and 3D suspension bridge models. The validity of the present method was demonstrated by comparing the results of the numerical examples.

Nonlinear bending analysis of functionally graded CNT-reinforced composite plates

  • Cho, Jin-Rae
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.23-32
    • /
    • 2022
  • In this paper, a nonlinear numerical method to solve the large deflection problem is introduced. And the non-dimensional load-deflection behavior of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates is parametrically investigated. The large deflection problem is formulated according to the von Kármán nonlinear theory and the (1,1,0)* hierarchical model, and it is approximated by 2-D natural element method (NEM). The shear locking phenomenon is suppressed by the selectively reduced integration method. The nonlinear matrix equations are solved by combining the incremental loading scheme and the Newton-Raphson iteration method. The proposed method is validated from the benchmark experiments, where the propose method shows an excellent agreement with the reference methods. The nonlinear behavior of FG-CNTRC plates is evaluated in terms of the non-dimensional load-deflection curve, and it is parametrically investigated with respect to the existence/non-existence and gradient pattern of CNTs, the width-to-thickness and aspect ratios of plates and the type of boundary conditions. The non-dimensional central deflection is significantly reduced when CNTs and added, and it decreases with the volume fraction of CNTs. But, it shows a uniform increase in proportion to the width-to-thickness and aspect ratios. Both the gradient pattern of CNTs and the type of boundary conditions do also show the remarkable effects.

Modified Integration Algorithm on the Strain-Space for Rate and Temperature Dependent Elasto-Plastic Constitutive model (변형률 공간에서 변형률속도 및 온도를 고려한 구성방정식의 개선된 적분방법)

  • Cho, S.S.;Huh, H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.272-275
    • /
    • 2007
  • This paper is concerned with modified integration algorithm on the strain-space for rate and temperature dependent elasto-plastic constitutive relations in order to obtain more accurate results in numerical implementation. The proposed algorithm is integrated analytically using integration by part and chain rule and then is applied to the 2-stage Lobatto IIIA with second-order accuracy. It has advantage that is able to consider the convective stress rates on the yield surface of the strain-space. Also this paper is carried out the iteration procedure using the Newton-Raphson method to enforce consistency at the end of the step. And the performance of the proposed algorithm for rate and temperature dependent constitutive relation is illustrated by means of analysis of adiabatic shear bands.

  • PDF

Fast LBG Algorithm to Reduce the Computational Complexity

  • Kim Dong-Hyun;Kang Chul-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.4E
    • /
    • pp.123-127
    • /
    • 2005
  • In this paper, we propose a new method for reducing the number of distance calculations in the LBG (Linde, Buzo, Gray) algorithm, which is widely used method to construct a codebook in vector quantization of speech recognition system. The proposed algorithm can reduce the distance calculation between input vector and codeword by utilizing the observation that codewords are quickly stabilized as the number of iteration increases. From the simulation results, it is shown that we can reduce the running times over $43.77\%$ on average in comparison with current LBG algorithm without sacrificing the performance of codebook.

BLOCKAGE EFFECT ON FLOWS AROUND A ROTATIONALLY OSCILLATING CIRCULAR CYLINDER (회전 진동하는 원형실린더 주위 유동의 폐쇄효과 연구)

  • Kang, Seung-Hee;Kwon, Oh-Joon
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.33-38
    • /
    • 2008
  • For study on the unsteady blockage effect, flows around a rotationally oscillating circular cylinder with relatively low forcing frequency in closed test-section wind tunnels have been numerically investigated by solving compressible Navier-Stokes equations. The numerical scheme is based on a node-based finite-volume method with the Roe's flux-difference splitting and an implicit time-integration method coupled with dual time-step sub-iteration. The computed results of the oscillating cylinder in the test section showed that the fluctuations of lift and drag are augmented by the blockage effects. The drag further increases because of low base pressure. The pressure on the test section wall shows the harmonics having the oscillating and the shedding frequencies contained in the blockage effect.

An Incompressible Flow Computation using a Hierarchical Iterative Method (계층적 반복법을 이용한 비압축성 유동계산)

  • Kim Jin Whan;Jeong Chang Ryul
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.216-221
    • /
    • 2004
  • In two dimensional incompressible flaws, a preconditioning technique called Hierarchical Iterative Procedure(HIP) has been implemented on a SUPG finite element formulation. By using the SUPG formulation, one can escape from the LBB constraint and hence achieve an equal order formulation. In this paper, we increased the order of interpolation up to cubic. The conjugate gradient squared(CGS) method is used for the outer iteration, and the HIP for the preconditioning for the incompressible Navier-Stokes equation. The hierarchical elements has been used to achieve a higher order accuracy in fluid flaw analyses, but a proper efficient iterative procedure for higher order finite element formulation has not been available so far. The numerical results by the present HIP for the lid driven cavity flaw showed the present procedure to be stable, very efficient and useful in flaw analyses in conjunction with hierarchical elements.

  • PDF

COMPUTATIONAL PITFALLS OF HIGH-ORDER METHODS FOR NONLINEAR EQUATIONS

  • Sen, Syamal K.;Agarwal, Ravi P.;Khattri, Sanjay K.
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.3_4
    • /
    • pp.395-411
    • /
    • 2012
  • Several methods with order higher than that of Newton methods which are of order 2 have been reported in literature for solving nonlinear equations. The focus of most of these methods was to economize on/minimize the number of function evaluations per iterations. We have demonstrated here that there are several computational pit-falls, such as the violation of fixed-point theorem, that one could encounter while using these methods. Further it was also shown that the overall computational complexity could be more in these high-order methods than that in the second-order Newton method.

Frequency characters of Holographic data storage system's data page And Description of optical system (홀로그래픽 정보 저장 장치의 데이터 페이지 주파수 특성 및 광학 시스템 표현)

  • Kim, Hwal;Jeon, Sungbin;Kim, Do-Hyung;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.11 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • The selective frequency analysis method is suggested in the holographic data storage system with the nyquist aperture to reduce the size of hologram. The image filter was designed with many different methods to improve the bit error rate caused by the nyquist aperture. In previous the methods of image restoration for HDS, an iteration time and a highly precise point spread function were necessary. In this paper, we describe the optical system with analytic method. Thereby, we expect our result help the researchers to design the filter.

An image coding algorithm using fractal interpolation method (이산 트랙탈 보간법을 이용한 영상 부호화 알고리즘)

  • 이승현;정현민;윤택현;최일상;박규태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.6
    • /
    • pp.82-91
    • /
    • 1996
  • In this paper, an image coding technique using fractal interpolation is proposed. Similar to the conventional methods, an image is partitioned into blocks and each block is coded independently. However, an interpolation point is ahsared by its neighboring blocks. This means that each block can use all its interpolation points with minimal increase of new data. For a simple implementation, triangular blocks are used instead of square blocks and new coefficients are difined. Data obtained in the encoding process hav estatistical characteristics suitable sfor entropy coding, an dthus arithmetic coding is perfomred for improving the compression efficiency. The results of the proposed coder in comparison with those of a conventional coder show that the interpolation method reduces block effect caused by a memoryless block coder, especially at low bit rates. This improvement is due to sharing of information between adjacent blocks. Moreover, th enumber of iteration required in ecoding process is reduced since more information is used to decode each block.

  • PDF