
THE JOURNAL CF THE ACOUSTICAL SOdEIY OF KOREA V으. 24, NO.4E 2005. 12 pp, ]23~127

Fast LBG Algorithm to Reduce the Coirputational 
Conplexity

Dong-Hyun Kim*, Chul-Ho Kang*

*Dept. of Electronics and Comm나nication 타igineering, Kwangwoon Univ.

(Received August 19 2005； rivised September 27； accepted November 28 2005)

Abstract

In this paper, we propose a new method for reducing the number of distance calculations in the LBG (Linde, Buzo, 
Gray) algorithm, which is widely used method to construct a codebook in vector quantization of speech recognition 
system. The proposed algorithm can reduce the distance calculation between input vector and codeword by utilizing the 

observation that codewords are quickly stabilized as the number of iteration increases. From the simulation results, it 
is shown that we can reduce the running times over 샤3.77% on average in comparison with current LBG algorithm 
without sacrificing the performance of codebook.

Keywords^ Vector Quantization, Codebook Generation, Clustering Algorithms

I. Introduction

We consider the codebook generation problem involved in the 
design of a vector quantizer[l]. The aim is to find code vectors 

(codebook) for a given set of training vectors (training set) by 
minimizing the average distance between the training vectors and 

their representative code vectors (codewords). The vectors are 
assumed to belong to a K-dimensional Euclidean space. Among 

several codebook generation algorithms, the LBG (Linde, Buzo, 
Gray) algorithm is probably the most cited and widely used 

method[2] because it is easy to implemait and produces 
relatively good codebooks in an efficient manner. The algorithm 
starts with an initial solution, which is then iteratively improved 
until the process converges. Each iteration consists of distribution 
step, where the vectors of the training set are distributed into a 
set of disjoint clusters, and of codebook upgrade step, where new 
code vectors are calculated. We introduce a new method for 
reducing the nximber of distance calculations in the distribution 
step without sacrificing codebook performance. The necessity of 
이ir paper is that plenty of time is needed to construct a universal

Corresponding author： Chul-Ho Kang (chkang5136@kw.ac.kr) 

Kwangwoon University, 447-1 Wolgye-Dong, Nowon-Ku, 139-701 

Seoul, Korea 

codebook in both speech and speaker recognition system. As for 

speaker recognition system, for example, it takes at least nine 
hours to construct a codebook per each word, which makes it 
diffic니t to implement recognition system. In addition, our fast 
clustering algorithm can be applied to GMM (Gaussian Mixture 

Model) based recognition system to reduce complexity.
Our new method records the information of codewords by 

considering whether they have been changed in the last iteration 
step or not. According to information of codewords, the clusters 

are classified into fixed and changing codeword. For training 
vectors in the fixed clusters, it is unnecessary to search for the 
nearest clusters among other codeword candidates. Thus, a 
speed-up can therefore be achieved because the number of fixed 
clusters is usually high as the number of iteration increases. From 
the simulation results, we can reduce the comparison search work 

while maintaining the optimality of codebook. This paper is 
organized as follows: In Section 2, the conventional LBG is 
explained and Section 3 describes some existing fast codeword 
search algorithms, and Section 4 presents the proposed method to 
reduce the computational complexity of LBG. Simulation results 
are given in Section 5, and finally, in Section 6 we summarize 
the conclusion.

Fast LBG Algorithm to Reduce the Computational Complexity 123

mailto:chkang5136@kw.ac.kr


II. LBG algorithm

We consider a set of N training vectors 4 in a K-dimensional 

Euclidean space. The aim is to find a codebook of code vectors 
by minimizing the average squared distance between the training 

vectors and their representative codewords. The distance between 
two vectors is defined by their squared Euclidean distance.

如旳)=|]7；-52=支(以_京2

卜1 u丿 

distance calculation immediately when the partial distance of the 

new candidate exceeds the minimum distance found so far. The 

TIE method utilizes the properties of the Euclidean distance 
function called triangular inequality for eliminating certain 
codewords from the calculations completely. In general, TIE 

achieves more calcination reduction than PDS, so TIE is fully 
adapted as fast codebook searching algorithm. These two 

algorithms could achieve complexity reduction while maintaining 
codebook performance. Instead other fast clustering algorithms 
have been studied while sacrificing little performance[6-8].

Let be a codebook and the partition of the training set. Under 
the usual ergodicity assumption, the distortion of the codebook is 

then determined using the presented training samples as

1 N
distortion (C) = ⑵

The method starts by generating an initial codebook, which is 

then improved iteratively using the following two steps. In the 
distribution step, each training vector is mapped to its nearest 

codeword in the current codebook.

對雎醜％ d(〈，Cj) ⑶

The resulting distribution P is optimal for the given codebook 
according to (2). In the codebook update step, a new codebook is 
constructed by calculating the centroids of the partitions

,平

Cj = 브크一, \ <j < M

X1 (4)

III. Some existing fast codeword search 
algorithms

In this section, we introduce previous studies on fast LBG 

algorithm denoted as partial distortion search (PDS) by Bei and 
Gray[4], triangular inequality elimination (TIE) by Chen and 

Tsieh[5]. All these methods reduce the amount of work of the 
distribution step, in one way or another, by utilizing the distance 
to the best candidate found so far. The PDS method stops the

IV. The proposed fast LBG algorithm

4.1. Design and concept
It is observed that the LBG makes only local changes in the 

codebook and the amount of changes differs from codeword to 

codeword[l][3]. Some codewords will therefore be stabilized 
within few iterations while others develop much longer before 
stabilizing. This observation is utilized by detecting fixed 

codeword indicating whether the codeword was changed during 
the previous iteration. The codewords are classified into two 
groups: fixed and changing codeword. The cluster of a fixed 
codeword is called a fixed cluster, and the cluster of a changing 
codeword is named as a changing clxister. Through a number of 

experiments, it is observed that the number of fixed codewords 
increases with the iteration. The fixed codeword detection is used 
for reducing the number of distance calculations in the case of

Fig. 1. The proposed fast LBG algorithm.

124 THE JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA VOL.24, NO.4E



Tablel. The specific amount of calculation.

algorithms multiplication addition

Proposed LBG 1)

LBG TCK TC(2K-1)

training vectors in fixed clusters.
Denote a training vector in a fixed cluster by Tf and a fixed 

codeword by cf. And the total number of training vector and 

codeword are denoted by T,c, respectively with K vector dimen­
sion. In this context, it is not necessary to calculate the distance 
between Tf and other codewords c. And the number of distance 
calculations in distribution step is AT AC (2K-\) + ATACK. Here, 

AT is tt“ and AC is c~cf. Table 1. indicates the specific 

amount of calculation. Each component of distance calculation 
between input vectors and codewords is shown on Table 1. In 

case fixed codewords are not detected in each iteration, the 
complexity of proposed method will be the same to that of 
conventional LBG algorithm. A speed-up is achieved because the 

number of 7/ quickly increases. Furthermore, the number of Tf 

is proportional to increase in the number of fixed codewords.
Our first observation is that if a fixed codeword was not the 

nearest codeword for Tf in the previous iteration, it cannot be the 

nearest codeword in the current iteration either. The partition of 
the training vectors in a fixed cluster cannot therefore change to 
another fixed cluster as well as changing clusters. For this reason, 

it is sufficient to calculate the distances between a changing 
codeword Cc and a training vector in a changing cluster. Our 

second observation is that only few number of codeword detected 
as a fixed codeword is changed to a changing codeword in the 

later iteration step. The method to deal with this matter is 
described in detail in the next section. In comparison with 
conventional LBG, subcodeword and fixed codeword detection 

are added. The subcodeword is defined to save the previous 
codeword to perform the fixed codeword detection in the later 
iteration.

4.2. Fixed codeword detection
Through a number of experiments, it is observed that few fixed 

codewords are changed to changing codewords in the later 
iteration. The main reason fbr this result is that the clustering 
update of neighbor codewords could cluster input training vector 
of fixed codewords. To cope with this problem, we define fixed 
codeword detection, which consists of two searches. Without 

adapting this method, we can expect to reduce more calculation 
complexity. However, it is of importance to maintain the 
performance of codebook with optimality, so this method is 
needed. The following indicates the steps in fixed codeword 
detection in detail and this process will be explained more in 
later chapter.

Step 1 그 Construct codeword distance table based on Euclidean 
distance measure

Step 2 > Classification of fixed and changing codeword 

according to whether they have been changed or not

Step 2-1 > Calculate radius of newly detected fixed codeword
S = {Cf； / = 1,2, R = arg max d(Cf,Tn)

Step 2-2 > if d{Cf,ci)<aR

cf is treated as changing codeword
else

c/is treated as fixed codeword
update error

where a = maximum error per each iteration, note that a = l, 

until first fixed codeword is detected and update error = 
codeword in the previoxis iteration - codeword in the next 
iteration

Step 3> Generate subcodeword from upgraded clusters and 
mark fixed codewords

The fixed codeword detection scheme is illustrated in Fig. 2. 
This scheme is divided into two searches. In case all of the 
codeword are processed in two searches, the next iteration begins. 
In the first search, fixed codewords are temporally classified

Fig. 2, A flowchart of fixed codeword detection.

Fast LBG Algorithm to Reduce the Computational Complexity 125



according to information whether upgraded codewords are 

changed or not by 
previous codeword 

codewords. And in 
codewords from the 

changing codewords
these fixed codewords satisfy the condition or not, we can obtain 

comparing upgraded codewords with the 
in the subcodeword to classify fixed 
the second search, newly detected fixed 
first search are classified into fixed and 
again. Based on the information whether 

fixed codeword. This second search is of importance because it 
can prevent degradation of codebook performance. And then, we 

mark all of the changing codewords in order to perform distance 
c이relation in the later iteration.

And update error is defined as difference between updated 
codewords and previous codewords in each iteration. The initial 
update error value is rather large because initial codeword is 

generated by random splitting. However, this update error is 
continually decreased because all codewords are stabilized as the 

number of iteration increases. And maximum error is maximum 
value of update error in the iteration where the first fixed 

codeword is detected. Before this fixed codeword is detected, 
value is always equal to 1.

V. Experimental setup and results

Test: Database for making world model includes 900 speech 

data of 300 persons (150 male and 150 female in each age of 
20's, 30's) for 4 different words in advance. For the LPC 
parameter, 20 msec speech is analyzed as a frame and 1/3 frame 
overlapped. Pre-emphasized speech is converted to 13 LPCC.

The computational decreasing rate of proposed method is 

43.77% on average. It is shown that the total codewords are 

stabilized as the number of iteration increases. Fig. 3. indicates 
the total computational complexity among three algorithms named 

TIE, PDS, and proposed method.

VI. Conclusion

We proposed a fast LBG algorithm to reduce the computational 

complexity while preserving the performance of codebook. The 
key observation is that a large proportion of the distance 
calculations between codeword and input training vector is 

unnecessary because only a few codewords remain the changing 
characteristic to the end of the iterations. An important property 

of the new method is that the speed-up is based on general 
property of the LBG algorithm and not on a property of the 

distance metric such as the triangular inequality. From the 
sim미ation resets, it is demonstrated that running time of 
constructing a codebook is reduced by 43.77 %, By adopting 

fixed codeword detection, the complexity reduction begins 
between 10 and 15 iterations but it continually increases at the 

end of iteration. This is because fixed codeword detection is 
based on the radius parameter derived from stabilization 
characteristics of codeword in each iteration.

Acknowledgment

The present research has been conducted by the research grant 
of Kwangwoon University in 2005.

Fig. 3. Total comparison of calculation of proposed fast LBG 
algorithm.

References

1. A. Gersho and R. M. Gray, Vector Quantization and Signa! 
Compression,, (Dordrecht, 자le Netherlands: Kluwer, 1992)

2. Y. Linde, A. Buzo, and R. M. (Bay, "An algorithm for vector 디uantizer 
design," IEEE Trans. Commun., 28, 84-95,Jan. 1980.

3. H. Abut, R. Gray and G. Rebolledo, "Vector quantization of speech 
and speech-like waveforms" , IEEE Trans. Acoust., Speech, Signal 
Processing, 30 (3), 423-435, Jun 1982

4. C. D. Bei and R. M. Gray, "An improvement of 卄le minimum 
distortion encoding algorithm for vector quantization" , IEEE Trans. 
Commun., 33, 1132-1133, Oct. 1985.

5. S. H. Chen and W. M. Hsieh, "Fast algorithm for VQ codebook 
design," Proc. Inst. Elect. Eng., 138, 357-362, Oct, 1991.

6. S. Arya, Mount, D.M, "Algorithms for fast vector quantization" , Data 
Compression Conference, 30, March-2 April 1993

126 THE JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA VOL.24, NO.4E



7. S.-M.Cheng, Lo, K-T, "Fast clustering process for vector 디uantisation 
codebook design'1 Electronics Letters, 32 (4), 311-312, 15 Feb. 
1996

8. Kai Li; Hou-Kuan Huang "Kun-Lun Li, A modified PCM 시니stering 
algorithm" , Machine Learning and Cybernetics, 2003 International 
Conference on 2, 1174-1179 2-5 Nov. 2003

[Profile]
® Dong-Hyun Kim

Dong-Hyun Kim was born in Seoul, Korea, on February 
12, 1978, He received the B.S, degree in 티ectronic 
Engineering and M.S. degree in Electronics and 
Communication Engineering from Kwangwoon University, 
Seoul, Korea, in 2003 and 2005, respectively. Currently, 
he is working as a research engineer at Mobile Handset 
Research and Development Center, LG 
Electronics,Korea. His research interests incl니de speech 
signal processing and clustering algorithm.

•Chul-Ho Kang

蒙'

' (가uil-Ho Kang received the B.S degree in 이ectronics 
engineering from Hanyang Univ, in 1975. And he also 
received the M.S and Ph.D. degree in 
electronics engineering from Seo니 National Univ, in 
1979 and 1988, respectively. He worked at ADD as a 
research engineer for five years from 1977 to 1982. He 
is currently working as a professor since 1983 at 
the Department of Electronics and Communications 
Engineering, Kwangwoon University. His research

interests inckide digital signal processing with application to the speech/ 
speaker recognition and communication systems.

Fast LBG Algorithm to Reduce the Gomputatjcm기 Complexity 127


