References
- ANSYS, ANSYS, Inc. Canonsburg, PA (USA), http://www.ansys.com.
- Coote, J.E., Lieven, N.A.J. and Skingle, G.W. (2005), "Sensor placement optimization for modal testing of a helicopter fuselage", Proceedings of the 24th International Modal Analysis Conference (IMAC), Orlando, Fl., USA.
- Fedorov, V.V. (1972), Theory of optimal experiments, New York, Academic Press.
- Friswell, M.I., Garvey, S.D. and Penny, J.E.T. (1995), "Model reduction using dynamic and iterated IRS techniques", J. Sound Vib., 186(2), 311-323. https://doi.org/10.1006/jsvi.1995.0451
- Golub, G.H. and Van, L.C.F. (1996), Matrix computations, 3rd Ed., Baltimore: Johns Hopkins University Press.
- Heo, G., Wang, M.L. and Satpathi, D. (1997), "Optimal transducer placement for health monitoring of long span bridge", Soil Dyn. Earthq. Eng., 16(7-8), 495-502. https://doi.org/10.1016/S0267-7261(97)00010-9
- Housner, G.W., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., Soong, T.T., Spencer, B.F. and Yao, J.T.P. (1997), "Structural control: past, present, and future", J. Eng. Mech. - ASCE, 123(9), 897-971. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897)
- Kammer, D.C. (1991), "Sensor placement for on-orbit modal identification and correlation of large space structures", J. Guid. Control Dynam., 14(2), 251-259. https://doi.org/10.2514/3.20635
- Kammer, D.C. (2005), "Sensor set expansion for modal vibration testing", Mech. Syst. Signal Pr., 19(4), 700-713. https://doi.org/10.1016/j.ymssp.2004.06.003
- Kammer, D.C. and Tinker M.L. (2004), "Optimal placement of triaxial accelerometers for modal vibration tests", Mech. Syst. Signal Pr., 18(1), 29-41. https://doi.org/10.1016/S0888-3270(03)00017-7
- Kammer, D.C. and Yao, L. (1994), "Enhancement of on-orbit modal identification of large space structures through sensor placement", J. Sound Vib., 171(1), 119-140. https://doi.org/10.1006/jsvi.1994.1107
- Li, D.S., Li, H.N. and Fritzec, C.P. (2007), "The connection between effective independence and modal kinetic energy methods for sensor placement", J. Sound Vib., 305(4-5), 945-955. https://doi.org/10.1016/j.jsv.2007.05.004
- Li, D.S., Li, H.N. and Fritzec, C.P. (2009), "A note on fast computation of effective independence through QR downdating for sensor placement", Mech. Syst. Signal Pr., 23(4), 1160-1168. https://doi.org/10.1016/j.ymssp.2008.09.007
- Lin, W., Ni, Y.Q. Xia, Y. and Chen, W. H. (2010), "Field measurement data and a reduced order finite element model for Task I of the SHM benchmark problem for high rise structures", Proceedings of the 5th World Conference on Structural Control and Monitoring, Tokyo, Japan.
- Meo, M. and Zumpano, G. (2005), "On the optimal sensor placement techniques for a bridge structure", Eng. Struct., 27(10), 1488-1497. https://doi.org/10.1016/j.engstruct.2005.03.015
- Ni, Y.Q., Xia, Y., Liao, W.Y. and Ko, J.M. (2009), "Technology innovation in developing the structural health monitoring system for Guangzhou New TV Tower", Struct Health Monit., 16(1), 73-98. https://doi.org/10.1002/stc.303
- Park, Y.S. and Kim, H.B. (1996), "Sensor placement guide for model comparison and improvement", Proceedings of the 14th International Modal Analysis Conference (IMAC), Dearborn, Mi., USA.
- Wang, X.L., Qu, W.L. and Liu, H. (2007), "Finite element analysis on dynamic characteristics of super high tower in Guangzhou", J. Wuhan Univ. Technol., 29(1), 142-144. https://doi.org/10.3321/j.issn:1671-4431.2007.01.040
- Yi, T.H., Li, H.N. and Gu, M. (2011), "A new method for optimal selection of sensor location on a high-rise building using simplified finite element model", Struct. Eng. Mech., 37(6), 671-684. https://doi.org/10.12989/sem.2011.37.6.671
- Yi, T.H., Li, H.N. and Gu, M. (2011), "Optimal sensor placement for health monitoring of high-rise structure based on genetic algorithm", Math. Probl. Eng., Article ID 395101, 1-11.
- Yi, T.H., Li, H.N. and Gu, M. (2011), "Optimal sensor placement for structural health monitoring based on multiple optimization strategies", Struct. Des. Tall Spec., 20(7), 881-900. https://doi.org/10.1002/tal.712
Cited by
- Optimal layout of long-gauge sensors for deformation distribution identification vol.18, pp.3, 2016, https://doi.org/10.12989/sss.2016.18.3.389
- Reviews on innovations and applications in structural health monitoring for infrastructures vol.1, pp.1, 2014, https://doi.org/10.12989/smm.2014.1.1.001
- Application of model reduction technique and structural subsection technique on optimal sensor placement of truss structures vol.15, pp.2, 2015, https://doi.org/10.12989/sss.2015.15.2.355
- Multiaxial sensor placement optimization in structural health monitoring using distributed wolf algorithm vol.23, pp.4, 2016, https://doi.org/10.1002/stc.1806
- Data fusion based improved Kalman filter with unknown inputs and without collocated acceleration measurements vol.18, pp.3, 2016, https://doi.org/10.12989/sss.2016.18.3.375
- Reproduction of vibration patterns of elastic structures by block-wise modal expansion method (BMEM) vol.18, pp.4, 2016, https://doi.org/10.12989/sss.2016.18.4.819
- Sensor optimization using a genetic algorithm for structural health monitoring in harsh environments vol.6, pp.3, 2016, https://doi.org/10.1007/s13349-016-0170-y
- Optimal placement of triaxial sensors for modal identification using hierarchic wolf algorithm vol.24, pp.8, 2017, https://doi.org/10.1002/stc.1958
- An Improved Genetic Algorithm for Optimal Sensor Placement in Space Structures Damage Detection vol.29, pp.3, 2013, https://doi.org/10.1260/0266-3511.29.3.121
- Monitoring of wind effects on a wind-sensitive hybrid structure with single-layer cable-net curtain walls under Typhoon Muifa vol.44, pp.None, 2021, https://doi.org/10.1016/j.jobe.2021.102960