Browse > Article
http://dx.doi.org/10.12989/scs.2022.42.1.023

Nonlinear bending analysis of functionally graded CNT-reinforced composite plates  

Cho, Jin-Rae (Department of Naval Architecture and Ocean Engineering, Hongik University)
Publication Information
Steel and Composite Structures / v.42, no.1, 2022 , pp. 23-32 More about this Journal
Abstract
In this paper, a nonlinear numerical method to solve the large deflection problem is introduced. And the non-dimensional load-deflection behavior of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates is parametrically investigated. The large deflection problem is formulated according to the von Kármán nonlinear theory and the (1,1,0)* hierarchical model, and it is approximated by 2-D natural element method (NEM). The shear locking phenomenon is suppressed by the selectively reduced integration method. The nonlinear matrix equations are solved by combining the incremental loading scheme and the Newton-Raphson iteration method. The proposed method is validated from the benchmark experiments, where the propose method shows an excellent agreement with the reference methods. The nonlinear behavior of FG-CNTRC plates is evaluated in terms of the non-dimensional load-deflection curve, and it is parametrically investigated with respect to the existence/non-existence and gradient pattern of CNTs, the width-to-thickness and aspect ratios of plates and the type of boundary conditions. The non-dimensional central deflection is significantly reduced when CNTs and added, and it decreases with the volume fraction of CNTs. But, it shows a uniform increase in proportion to the width-to-thickness and aspect ratios. Both the gradient pattern of CNTs and the type of boundary conditions do also show the remarkable effects.
Keywords
CNT-reinforced; composite plates; functionally graded; Natural element method (NEM); non-dimensional load-deflection curve; nonlinear bending deflection;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Cho, J.R. and Lee, H.W. (2007), "Polygon-wise constant curvature natural element approximation of Kirchhoff plate model", Int. J. Solids Struct., 44, 4860-4871. https://doi.org/10.1016/j.ijsolstr.2006.12.009.   DOI
2 Fidelus, J.D., Wiessel, E., Gojny, F.H., Schulte, K. and Wagner, H.D. (2005), "Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites", Composite Part A, 36, 530-540. https://doi.org/10.1016/j.compositesa.2005.02.006.   DOI
3 Cho, J.R. and Oden, J.T. (2000), "Functionally graded material: A parametric study on thermal-stress characteristics using the Crank-Nicolson-Galerkin scheme", Comput. Meth. Appl. Mech. Engrg., 188, 17-38. https://doi.org/10.1016/S0045-7825(99)00289-3.   DOI
4 Daniel, I.M. and Ishai, O. (1994), Engineering Mechanics of Composite Materials, Oxford University Press, New York.
5 Tohidi, H., Hosseini-Hashemi, S., Maghsoudpour, A. and Etemadi, S. (2017), "Strain gradient theory for vibration analysis of embedded cnt-reinforced micro Mindlin cylindrical shells considering agglomeration effects", Struct. Eng. Mech., 62, 551-565. https://doi.org/10.12989/sem.2017.62.5.551.   DOI
6 Van Do, V.N. and Lee, C.H. (2017), "Bending analyses of FG-CNTRC plates using the modified mesh-free radial point interpolation method based on the higher-order shear deformation theory", Composite Struct., 168, 485-497. https://doi.org/10.1016/j.compstruct.2017.02.055.   DOI
7 Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanobute composites", Comput. Mater. Sci., 39, 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011.   DOI
8 Esawi, A.M.K. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: Potential and current challenges", Mater. Des., 28, 2394-2401. https://doi.org/10.1016/j.matdes.2006.09.022.   DOI
9 Fiedler, B., Gojny, F.H., Wichmann, M.H.G., Notle, M.C.M. and Schulte, K. (2006), "Fundamental aspects of nano-reinforced composites", Composite Sci. Technol., 66, 3115-3125. https://doi.org/10.1016/j.compscitech.2005.01.014.   DOI
10 Formica, G., Lacarbonara, W. and Alessi, R. (2010), "Vibrations of carbon nanotube-reinforced composites", J. Sound Vib., 329, 1875-1889. https://doi.org/10.1016/j.jsv.2009.11.020.   DOI
11 Harris, P.J.F. (2001) Carbon Nanotubes and Related Structures: New Materials for the Twenty-first Century, Cambridge University Press.
12 Kumar, P. and Srinivas, J. (2017) "Vibration, buckling and bending behavior of functionally graded multi-walled carbon nanotube reinforced polymer composite plates using the layer-wise formulation", Compos. Struct., 177, 158-170. https://doi.org/10.1016/j.compstruct.2017.06.055.   DOI
13 Borjalilou, V., Taati, E. and Ahmadian, M.T. (2019), "Bending, buckling and free vibration of nonlocal FG-carbon nanotube-reinforced composite nanobeams: Exact solutions", SN Appl. Sci., 1, 1323. https://doi.org/10.1007/s42452-019-1359-6.   DOI
14 Wuite, J. and Adali, S. (2005) "Deflection and stress behavior of nanocomposite reinforced beams using a multiscale amalysis", Compos. Struct., 71, 388-396. https://doi.org/10.1016/j.compstruct.2005.09.011.   DOI
15 Sukumar, N., Moran, B. and Belytschko, T. (1998), "The natural element method in solid mechanics", Int. J. Numer. Methods Engng., 43(5), 839-887. https://doi.org/10.1002/(SICI)1097-0207(19981115)43:5<839::AID-NME423>3.0.CO;2-R.   DOI
16 Wong, M., Paramsothy, M., Xu, X.J., Ren, Y., Li, S. and Liao, K. (2003), "Physical interactions at carbon-nanotube-polymer interface", Polymer, 44, 7757-7764. https://doi.org/10.1016/j.polymer.2003.10.011.   DOI
17 Cho, J.R. and Oden, J.T. (1996), "A priori modeling error estimates of hierarchical models for elasticity problems for plate- and shell-like structures", Mathl. Comput. Modelling., 23(10), 117-133. https://doi.org/10.1016/0895-7177(96)00058-1.   DOI
18 Adam, C., Bouabdallah, C., Zarroug, M. and Maitourrnam, H. (2015), "Improved numerical integration for locking treatment in isogemetric structural elements. Part II: Plates and shells", Comput. Meth. Appl. Mech. Engrg., 284, 106-137. https://doi.org /10.1016/j.cma.2014.07.020.   DOI
19 Ajayan, P.M., Stephane, O., Collix, C. and Trauth, D. (1994), "Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite", Science, 256, 1212-1214. https://doi.org/10.1126/science.265.5176.1212.   DOI
20 Arani, A., Maghamikia, S., Mohammadimehr, M. and Arefmanesh, A. (2011), "Buckling analysis of laminated composite rectangular plates reinforced by SWCNTS using analytical and finite element methods", J. Mech. Sci. Technol., 25, 809-820. https://doi.org/ 10.1007/s12206-011-0127-3.   DOI
21 Chavan, S.G. and Lal, A. (2017), "Bending behavior of SWCNT reinforced composite plates", Steel. Compos. Struct., 24(5), 537-548. https://doi.org/10.12989/scs.2017.24.5.537.   DOI
22 Chinesta, F., Cescotto, C., Cueto, E. and Lorong, P. (2013) Natural Element Method for the Simulation of Structures and Processes, Wiley.
23 Cho, J.R. (2020), "Natural element approximation of hierarchical models of plate-like elastic structures", Finite. Elem. Anal. Des., 180, 103439. https://doi.org/10.1016/j.finel.2020.103439.   DOI
24 Cho, J.R. (2021) "Natural element hierarchical models for the free vibration analyses of laminate composite plates", Compos. Struct., 272, 114247, https://doi.org/10.1016/j.compstruct.2021.114147.   DOI
25 Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams", Composite Struct., 92, 676-683. https://doi.org/10.1016/j.compstruct.2009.09.024.   DOI
26 Cho, J.R. and Lee, H.W. (2006), "A Petrov-Galerkin natural element method securing the numerical integration accuracy", J. Mech. Sci. Technol., 20(1), 94-109, https://doi.org/10.1007/BF02916204.   DOI
27 Zghal, S., Frikha, A. and Dammak, F. (2018), "Non-linear bending analysis of nanocomposites reinforced by graphene-nanotubes with finite shell element and mabrane enhancement", Eng. Struct., 158, 95-109. https://doi.org/10.1016/j.engstruct. 2017.12.017.   DOI
28 Alibeigloo, A. and Emtehani A. (2015), "Static and free vibration analyses of carbon nonotube-reinforced composite plate using differential quadrature rule", Meccanica, 50, 61-76. https://doi.org/10.1007/s11012-014-0050-7.   DOI
29 Wu, T.I., Shukla, K.K. and Huang, J.H. (2006), "Nonlinear static and dynamic analysis of functionally graded plates", Int. J. Appl. Mech. Eng., 11:679-698.
30 Barber, A.H., Cohen, S.R. and Wagner, H.D. (2003), "Measurement of canbon nanotube-polymer interfacial strength", Appl. Phys. Lett., 82, 4140-4142. https://doi.org/10.1063/1.1579568.   DOI
31 Lei, Z.X., Liew, K.M. and Yu, J.L. (2013), "Large deflection analysis of functionally graded carbon nanotube-reinforced composite plates by the element-free kp-Ritz method", Comput. Methods Appl. Mech. Engrg., 256, 189-199. https://doi.org/10.1016/j.cma.2012.12.007.   DOI
32 Shen, S.H. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Composite Struct., 19, 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.   DOI
33 Hu, N., Fugunaga, H., Lu, C., Kameyama, M. and Yan, B. (2005), "Prediction of elastic properties of carbon nanotube reinforced composites", Proc. Royal Soc. A, 461, 1685-1670, https://doi.org /10.1098/rspa.2004.1422.   DOI
34 Zaghloul, S.A. and Kennedy, J.B. (1975), "Nonlinear behavior of symmetrically laminated plates", J. Appl. Mech. Trans. ASME, 42, 234-236. https://doi.org/10.1115/1.3423532.   DOI
35 Keleshteri, M.M., Asadi, H. and Aghdam, M.M. (2019), "Nonlinear bending analysis of FG-CNTRC annular plates with variable thickness on elastic foundation", Thin-Walled Struct., 135, 453-462. https://doi.org/10.1016/j.tws.2018.11.020.   DOI
36 Kuhlmann, G. and Rolfes, R. (2004), "A hierarchic 3D finite element for laminated composites", Int. J. Numer. Methods Engng., 61, 96-116. https://doi.org/10.1002/nme.1060.   DOI
37 Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), "Mechanical analysis of functionally graded carbon nanotibe reinforced composite: A review", Composite Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041.   DOI
38 Mehar, K., Panda, S.K. and Mahapatra, T. (2018), "Large deformation bending responses of nanotube-reinforced polymer composite panel structure: Numerical and experimental analyses", Int. Mech. G: J. Aero. Eng., 233(5), 1695-1704. https:// doi.org/10.1177/0954410018761192.   DOI
39 Mirzaei, M. and Kiani, Y. (2017), "Nonlinear free vibration of FG-CNT reinforced composite plates", Struct. Eng. Mech., 64(3), 381-390. https://doi.org/10.12989/sem.2017.64.3.381.   DOI
40 Heydari, M.M., Bidgoli, A.H., Golshani, H.R., Beygipoor, G. and Davoodi, A. (2014), "Nonlinear bending analysis of functionally graded CNT-reinforced composite Mindlin polymeric temperature-dependent plate resigning on orthotropic elastomeric medium using GDQM", Nonlinear Dyn., 79, 1425-1441. https://doi.org/10.1007/s11071-014-1751-0.   DOI
41 Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Composite Struct., 94, 1450-1460, https://doi.org/10. 1016/j.compstruct.2011.11.010.   DOI
42 Zienkiewicz, O.C., Taylor, R.L. and Too, J.M. (1971) "Reduced integration technique in general analysis of plates and shells", Int. J. Numer. Methods Engng., 3(2), 275-290. https://doi.org/10.1002 /nme.1620030211.   DOI