• Title/Summary/Keyword: Iteration Method

검색결과 1,145건 처리시간 0.28초

Modified Tikhonov regularization in model updating for damage identification

  • Wang, J.;Yang, Q.S.
    • Structural Engineering and Mechanics
    • /
    • 제44권5호
    • /
    • pp.585-600
    • /
    • 2012
  • This paper presents a Modified Tikhonov Regularization (MTR) method in model updating for damage identification with model errors and measurement noise influences consideration. The identification equation based on sensitivity approach from the dynamic responses is ill-conditioned and is usually solved with regularization method. When the structural system contains model errors and measurement noise, the identified results from Tikhonov Regularization (TR) method often diverge after several iterations. In the MTR method, new side conditions with limits on the identification of physical parameters allow for the presence of model errors and ensure the physical meanings of the identified parameters. Chebyshev polynomial is applied to approximate the acceleration response for moderation of measurement noise. The identified physical parameter can converge to a relative correct direction. A three-dimensional unsymmetrical frame structure with different scenarios is studied to illustrate the proposed method. Results revealed show that the proposed method has superior performance than TR Method when there are both model errors and measurement noise in the structure system.

Fuzzy finite element method for solving uncertain heat conduction problems

  • Chakraverty, S.;Nayak, S.
    • Coupled systems mechanics
    • /
    • 제1권4호
    • /
    • pp.345-360
    • /
    • 2012
  • In this article we have presented a unique representation for interval arithmetic. The traditional interval arithmetic is transformed into crisp by symbolic parameterization. Then the proposed interval arithmetic is extended for fuzzy numbers and this fuzzy arithmetic is used as a tool for uncertain finite element method. In general, the fuzzy finite element converts the governing differential equations into fuzzy algebraic equations. Fuzzy algebraic equations either give a fuzzy eigenvalue problem or a fuzzy system of linear equations. The proposed methods have been used to solve a test problem namely heat conduction problem along with fuzzy finite element method to see the efficacy and powerfulness of the methodology. As such a coupled set of fuzzy linear equations are obtained. These coupled fuzzy linear equations have been solved by two techniques such as by fuzzy iteration method and fuzzy eigenvalue method. Obtained results are compared and it has seen that the proposed methods are reliable and may be applicable to other heat conduction problems too.

GEGENBAUER WAVELETS OPERATIONAL MATRIX METHOD FOR FRACTIONAL DIFFERENTIAL EQUATIONS

  • UR REHMAN, MUJEEB;SAEED, UMER
    • Journal of the Korean Mathematical Society
    • /
    • 제52권5호
    • /
    • pp.1069-1096
    • /
    • 2015
  • In this article we introduce a numerical method, named Gegenbauer wavelets method, which is derived from conventional Gegenbauer polynomials, for solving fractional initial and boundary value problems. The operational matrices are derived and utilized to reduce the linear fractional differential equation to a system of algebraic equations. We perform the convergence analysis for the Gegenbauer wavelets method. We also combine Gegenbauer wavelets operational matrix method with quasilinearization technique for solving fractional nonlinear differential equation. Quasilinearization technique is used to discretize the nonlinear fractional ordinary differential equation and then the Gegenbauer wavelet method is applied to discretized fractional ordinary differential equations. In each iteration of quasilinearization technique, solution is updated by the Gegenbauer wavelet method. Numerical examples are provided to illustrate the efficiency and accuracy of the methods.

A new conjugate gradient algorithm for solving dynamic load identification

  • Wang, Lin J.;Deng, Qi C.;Xie, You X.
    • Structural Engineering and Mechanics
    • /
    • 제64권2호
    • /
    • pp.271-278
    • /
    • 2017
  • In this paper, we propose a new conjugate gradient method which possesses the global convergence and apply it to solve inverse problems of the dynamic loads identification. Moreover, we strictly prove the stability and convergence of the proposed method. Two engineering numerical examples are presented to demonstrate the effectiveness and speediness of the present method which is superior to the Landweber iteration method. The results of numerical simulations indicate that the proposed method is stable and effective in solving the multi-source dynamic loads identification problems of practical engineering.

A TWO-LEVEL FINITE ELEMENT METHOD FOR THE STEADY-STATE NAVIER-STOKES/DARCY MODEL

  • Fang, Jilin;Huang, Pengzhan;Qin, Yi
    • Journal of the Korean Mathematical Society
    • /
    • 제57권4호
    • /
    • pp.915-933
    • /
    • 2020
  • A two-level finite element method based on the Newton iterative method is proposed for solving the Navier-Stokes/Darcy model. The algorithm solves a nonlinear system on a coarse mesh H and two linearized problems of different loads on a fine mesh h = O(H4-𝜖). Compared with the common two-grid finite element methods for the considered problem, the presented two-level method allows for larger scaling between the coarse and fine meshes. Moreover, we prove the stability and convergence of the considered two-level method. Finally, we provide numerical experiment to exhibit the effectiveness of the presented method.

Acceleration of the AFEN Method by Two-Node Nonlinear Iteration

  • Moon, Kap-Suk;Cho, Nam-Zin;Noh, Jae-Man;Hong, Ser-Gi
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.87-92
    • /
    • 1998
  • A nonlinear iterative scheme developed to reduce the computing time of the AFEN method was tested and applied to two benchmark problems. The new nonlinear method for the AFEN method is based on solving two-node problems and use of two nonlinear correction factors at every interface instead of one factor in the conventional scheme. The use of two correction factors provides higher-order accurate interface noes as well as currents which are used as the boundary conditions of the two-node problem. The numerical results show that this new method gives exactly the same solution as that of the original AEFEN method and the computing time is significantly reduced in comparison with the original AFEN method.

  • PDF

A new approach to determine batch size for the batch method in the Monte Carlo Eigenvalue calculation

  • Lee, Jae Yong;Kim, Do Hyun;Yim, Che Wook;Kim, Jae Chang;Kim, Jong Kyung
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.954-962
    • /
    • 2019
  • It is well known that the variance of tally is biased in a Monte Carlo calculation based on the power iteration method. Several studies have been conducted to estimate the real variance. Among them, the batch method, which was proposed by Gelbard and Prael, has been utilized actively in many Monte Carlo codes because the method is straightforward, and it is easy to implement the method in the codes. However, there is a problem when utilizing the batch method because the estimated variance varies depending on batch size. Often, the appropriate batch size is not realized before the completion of several Monte Carlo calculations. This study recognizes this shortcoming and addresses it by permitting selection of an appropriate batch size.

A VISCOSITY TYPE PROJECTION METHOD FOR SOLVING PSEUDOMONOTONE VARIATIONAL INEQUALITIES

  • Muangchoo, Kanikar
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권2호
    • /
    • pp.347-371
    • /
    • 2021
  • A plethora of applications from mathematical programmings, such as minimax, mathematical programming, penalization and fixed point problems can be framed as variational inequality problems. Most of the methods that used to solve such problems involve iterative methods, that is why, in this paper, we introduce a new extragradient-like method to solve pseudomonotone variational inequalities in a real Hilbert space. The proposed method has the advantage of a variable step size rule that is updated for each iteration based on previous iterations. The main advantage of this method is that it operates without the previous knowledge of the Lipschitz constants of an operator. A strong convergence theorem for the proposed method is proved by letting the mild conditions on an operator 𝒢. Numerical experiments have been studied in order to validate the numerical performance of the proposed method and to compare it with existing methods.

Prediction Approach with a Stiffness Measure in Nonlinear Dynamic Analysis of Reinforced Concrete Structures (철근 콘크리트 구조물의 비선형 동적 해석을 위한 성치 측정에 의한 예측 접근법)

  • 김교신;전경훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • 제1권1호
    • /
    • pp.1-10
    • /
    • 1997
  • Current seismic design philosophy for reinforced concrete (RC) structures on energy dissipation through large inelastic defomations. A nonlinear dynamic analysis which is used to represent this behavior is time consuming and expensive, particularly if the computations have to be repeated many times. Therefore, the selection of an efficient yet accurate alogorithm becomes important. The main objective of the present study is to propose a new technique herein called the prediction approach with siffness measure (PASM) method in the convetional direct integration methods, the triangular decomposition of matrix is required for solving equations of motion in every time step or every iteration. The PASM method uses a limited number of predetermined decomposed effective matrices obtained from stiffness states of the structure when it is deformed into the nonlinear range by statically applied cyclic loading. The method to be developed herein will reduce the overall numerical effort when compared to approaches which recompute the stiffness in each time step or iteration.

  • PDF

Image Restoration of Remote Sensing High Resolution Imagery Using Point-Jacobian Iterative MAP Estimation (Point-Jacobian 반복 MAP 추정을 이용한 고해상도 영상복원)

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • 제30권6호
    • /
    • pp.817-827
    • /
    • 2014
  • In the satellite remote sensing, the operational environment of the satellite sensor causes image degradation during the image acquisition. The degradation results in noise and blurring which badly affect identification and extraction of useful information in image data. This study proposes a maximum a posteriori (MAP) estimation using Point-Jacobian iteration to restore a degraded image. The proposed method assumes a Gaussian additive noise and Markov random field of spatial continuity. The proposed method employs a neighbor window of spoke type which is composed of 8 line windows at the 8 directions, and a boundary adjacency measure of Mahalanobis square distance between center and neighbor pixels. For the evaluation of the proposed method, a pixel-wise classification was used for simulation data using various patterns similar to the structure exhibited in high resolution imagery and an unsupervised segmentation for the remotely-sensed image data of 1 mspatial resolution observed over the north area of Anyang in Korean peninsula. The experimental results imply that it can improve analytical accuracy in the application of remote sensing high resolution imagery.