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A TWO-LEVEL FINITE ELEMENT METHOD FOR
THE STEADY-STATE NAVIER-STOKES/DARCY MODEL

JILIN FANG, PENGZHAN HUANG, AND Y1 QIN

ABSTRACT. A two-level finite element method based on the Newton itera-
tive method is proposed for solving the Navier—Stokes/Darcy model. The
algorithm solves a nonlinear system on a coarse mesh H and two linearized
problems of different loads on a fine mesh h = O(H*~¢). Compared with
the common two-grid finite element methods for the considered prob-
lem, the presented two-level method allows for larger scaling between the
coarse and fine meshes. Moreover, we prove the stability and conver-
gence of the considered two-level method. Finally, we provide numerical
experiment to exhibit the effectiveness of the presented method.

1. Introduction

The Navier—Stokes/Darcy model, coupled by certain transmission conditions
at the interface, describes the coupling of incompressible fluid flow with porous
media flow. This model plays an important role in many current industrial
and technological applications, including hydrogeological mechanics, soil pol-
lution simulation, biohydrodynamics, oil drilling and production engineering,
industrial filtration and so on. Therefore, much effort has been devoted to
the development of efficient numerical approaches for investigating this model.
At the time of writing, some efficient numerical methods have been proposed
[3,9,10,15,20,22,23]. In addition, Chidyagwai and Riviére [7] have used contin-
uous finite elements in the incompressible flow region and discontinuous finite
elements in the porous medium for solving the Navier—Stokes/Darcy model. A
non-conforming finite volume element method has designed by Wu and Mei
[29]. In [13], Girault and Riviere have proposed a numerical scheme based on
discontinuous finite element methods and given the optimal error estimates. A
discontinuous Galerkin finite element method for the discretization of this prob-
lem is applied by Hadji et al. [14]. Then the authors have developed a posteriori
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error analysis for the resulting discrete problem. Cao et al. [5] have proposed
a domain decomposition method to improve the efficiency of the finite element
method and applied Newton iteration to deal with the nonlinear systems. In
particular, based on two-grid discretization, Du et al. [11,12] have constructed
some local and parallel finite element algorithms for the considered problem.
Besides, Chidyagwai [6] have designed a multilevel decoupling method for the
Navier—Stokes/Darcy model and obtained the optimal error estimates.

When it comes to the two-grid method which is firstly introduced by Xu [30,
31] and can save a large amount of CPU time, it is a significant method to deal
with the nonlinear problem. Its basic idea is solving one nonlinear system on a
coarse mesh as an iterative initial value approximation of a fine mesh and then
solving one linear system on the fine mesh. By employing the two-grid strategy,
a two-grid finite element method for the Navier-Stokes/Darcy model is given
and the efficiency through numerical analysis and experiments is verified [4].
However, it has not theoretically achieved the optimal error estimates. The
scaling between the coarse mesh size and fine mesh size is h = O(H %) Further,
Qin and Hou [25] have proved the optimal error estimates for the velocity and
the pressure in the fluid flow region, and improved the scaling between the
coarse and fine mesh size from h = O(H?2) to h = O(H?). In addition, according
to the work in [4], Jia et al. [19] have proposed and analyzed a modified two-
grid decoupling method for the mixed Navier—Stokes/Darcy model, where the
scaling between the coarse and fine mesh size is h = O(H?). This scaling is
also obtained in [26,33]. Moreover, based on the two-grid method and a recent
local and parallel finite element method, a parallel two-grid linearized method
for the coupled Navier—Stokes-Darcy problem is proposed and analyzed [34].
Similarly, it has the same order of accuracy as the standard finite element
method when one takes h = O(H?). However, it is known that the two-level
method is considered to be more effective for the case h < H. Hence, it
is important to find an efficient algorithm to increase the ratio between the
coarse and fine meshes of the two-level method.

Recently, Dai and Cheng [8] have shown a two-grid method for solving the
Navier—Stokes equations based on Newton iteration. This method involves solv-
ing one small nonlinear system on a coarse mesh and two large linear problems
on the fine mesh, which allows a much higher order scaling between the coarse
grid size and fine grid size. Inspired by the idea of [8,16,17,28], a two-level
method for the Navier-Stokes/Darcy model based on the Newton iteration is
given in this article. This method consists of solving a small nonlinear problem
on a coarse mesh and two large linearized problems of different loads on a fine
mesh based on the Newton iteration.

The rest of the paper is arranged as follows: In the next section, we intro-
duce some notations, function spaces and some significant results of the steady
Navier—Stokes/Darcy model. In Section 3, a two-level finite element method
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for the Navier—Stokes/Darcy model is presented. In Section 4, numerical ex-
periment is implemented to verify the effectiveness of this presented method.

2. Notation and preliminaries

In this article, we consider the coupled fluid and the porous media flows on
the domain  C R?, which consists of two subdomains Qs and (2, separated
by an interface I, i.e., Q; UQ, = Q, Q; NQ, = @ and 9Q; N 9N, = I'. Here,
we suppose I is sufficiently smooth as in [4]. Besides, ny and n, represent the
unit outward normal vectors on 9€Q2¢ and 02, respectively.

In Q¢, the fluid flow is governed by the stationary incompressible Navier—
Stokes equations [27,33]:

) { —V-T(us,ps) +ps(uy - Viuy =fi - in Q,

V-our=0 in Qy,
where uy and p; denote the velocity and the kinetic pressure in {2, respectively.
py is the density of the fluid, f; is the external force and T(uy,ps) = —psI+
2vD(uy) is the stress tensor, where v > 0 represents the viscosity coefficient
and D(uy) = $(Vuy + V' uy) is the deformation tensor.

In Q,, the porous media flow is governed by the Darcy equation [24]:

) { q=-K V¢ inQ,,

V- q= f2 in Qp,
where ¢ = 2z + % means the piezometric head, z is the elevation from a
reference level, p, is the pressure in (), and g is the gravity acceleration. The
discharge vector q = €u,, ¢ is the volumetric porosity [21] and u, is the velocity
in Q. In addition, f5 is the source term with a solvability condition pr fo=0.
K is the hydraulic conductivity tensor of the porous medium. Here, we assume

that K is a symmetric positive define matrix uniformly bounded above and
below, i.e., 3 Amin > 0, Amax > 0 such that

(3) a.e. X € Oy, ApinX - X <Kx-x < ApaxX - X
Using Darcy’s law, (2) can be rewritten in the elliptic form:
(4) V- (K-V¢)=foin Q,.
For boundaries 0Q2¢\I" and 992, \I", we impose homogeneous Dirichlet bound-
ary conditions, i.e.,

(5) ur = 0 on an\F,

$=0  on dQ\I'.
About the interface I', we consider the following interface conditions as studied
in [2,18]:

uy-ny+u,-n, =0,
@

(6) T [=T(us,ps) ny = ﬁ
ny - [=T(us,py) ng| = prgo,

11]0'7'7
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where « is a positive parameter depending on the properties of the porous
medium that is experimentally determined and 7 is an unit tangential vector
on I'. For brevity, we assume that ¢ and p; are constants.

Denote W = H; x H, and Q = L*(Qy), where

Hy={veH"(Q)?:v=0on0\I'},
H,={¢€ H(Q,):¢=0o0n0oQ\I'}.

We equip the space L2(A) (A = Q or Q,) with the usual L%-scalar product
(-,-) and L?-norm ||-|[12(a). The space W is equipped with the following norm:
Vu = (Uf,gb) ew,

lullw = /2v(D(uy), D(uy))a, +K(Ve, Vo)a,.

Set f = (f1, f2), then the weak formulation of the steady Navier—Stokes/Darcy
model as follows: Find u = (uy,¢) € W, p;y € Q such that

@ o) ) i) = () Vo= (V.)€
d(u,q) =0 Vg € Q,

a(u7 U) = aq; (uf7 V) + aq, (¢, 1/)) +ar (’U,, U)a

agf(uf,v):g/Q zyD(uf):D(v)+g/m/#_K.T(uf.T).(v.T),
f
ag, (6, ) :pfg/Q K-Vo-Vo, ar(u,v) =spfg/F(<z>v-nf _uy-y),

1
b(us;uy,v) =epy (/ (uf-V)uy-v+ f/ (V-uy)uy -v) ,
Q 2 Ja,

al(upf):—s/Q pfV v, (f,u)zs/ fl.v+pfg/Q a1
f P

Qf

In addition, for the trilinear form b(-;-,-), we list the following estimates [8]:
Yu,v,w € Hy,

[b(w; v, w)| < Col|Vul|p2 (a2 I VVIL2 ()2 [ VW L2(0,)25

(8)

|b(u; v, w)| < ClHquL;(EQf)zHV‘1||EL2(Qf)2||VV||L2(Qf)2||VW||L2(Qf)2,

where Cy and C7 denote the positive constants and € > 0 is arbitrarily small.

We also recall the Poincaré and Korn’s inequalities, trace inequalities [32]
and Sobolev inequalities that are useful in the analysis. There exist constants
Cs, C3, Cy, Cs, Cg, C7 and Cg that depend on Qf or €2, such that Vv € Hy,
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V¢ € H,,, we have the following bounds [33]

IVilzz,)2 < CallVVlL2(0,)2, [9llz2(0,) < C3lIVPllL2(0,),
VViLz,)2 < CallD(V)|lL2(0))2; C5||K1/2V¢||%2(Qp) < ag,(¢;9),
I6ll22(a,) < CelK2Velr2(a,),  IVIrzm:e < CllVViiLaa,)e,
[¢llLzry < Cs[Vel L2(a,)-

Given (3), we obtain

1 1
- |KY?V <|v <
pa— 2o, < 1VOlleza,) < —5=

The following well-posedness for the coupled Navier-Stokes/Darcy model
(7) is classical.

(10) IKY2V 6| r2(a,)-

Theorem 2.1 ([1,33]). Assume that the data satisfies:

2 Pfgcz)% 2
<
Z2(0,)2 + . 1211220, C2Co

C3C3
— I
174

Then the problem (7) has at most one weak solution satisfying

C3C3

prgCs3
||D(uf)||i2(gf)2 < F”fl”i%QfV + A2

26V A min

We partition 2y and €, by quasi-uniform triangulations Ky, and K, , with
a real positive parameter p (1 = h or H with h < H). For given K, , and
Ky ., we consider the following finite element spaces W, = Hy , x H, , C W

and Q, C Q:
Hyp= (P ) NHp, Hypu={1h, €C'Q): vulx € PL(K),VK € K, .},

Qu= {CI# € CO(QJ‘) tqulx € PL(K),VK € Kfv#}7

1£2ll720,)-

where
Pl ={v, € C%y) : v,|k € Pi(K) @ span{b}, VK € Ky},

b is a bubble function, and P;(K) is a space of linear polynomials on element
K. Furthermore, we need the subspace Hy ,o of Hy, which is defined as

Hy o =A{vy € Hy 15 (V- vy, q.) =0,Yg, € Qpu}-

Note that the inf-sup condition holds, i.e., there is a positive constant 8 inde-
pendent of u such that

(11) d(vu, qu) 2 Bllvullwllaulle,  Yvu € Wy, qu € Q.
Further, the finite element scheme of (7) is defined as the following coupled
system: Find u, = (s, ¢,) € Wy, and py,, € Q,, such that
(12) a(ty, V) + AV prp) H0(ug iy s vi) = (f,vu) You= (v, ) €W,
d(uu,qu) =0 Vg €Qpu-
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The following theorems establish the stability and error estimate results for
the finite element discretization (12) of the considered problem.

Theorem 2.2 ([4,7,33]). Let

1/2 212 2 202 1/2
11 eCsC 2p59°C§
R = (max (2. 5} ( o YA TR

2.3
< 8e“v
= Cg CS’ 9

Then, under the assumption R> the problem (12) admits a unique

solution satisfying
(13) 20| D(uys) 7200, + K2 Voulizq,) < B

Besides, let (ug, ¢,ps) € H*(Q5)% x H2(Q,) x H'(25) be the solution of (7),
we have the following error estimate

ID(uy —uy )22, +1IV(P = du)llzzc,) + P — PrullLaes)
< cp(llugllazopz + 10l a20,) + IPfllH ()

(14)

Theorem 2.3 ([4]). Under the assumption of Theorem 2.2, let (uyp, dn,Pr.n)
be the finite element solution of (12) (= h), we have the L*-error estimate
(15) luy —ugnllzz,)2 + 10 — éullz2(a,)

< ch?(|lusllg2a,2 + 10la2 o, + IofllE10)))

and for h < H, we then have

(16)  llupn —ugmllmop: < cH(luslluz@p2 + 19520, + IPslla1@)))-

3. A two-level finite element method
In this section, we show an effective two-level finite element method for the
Navier-Stokes/Darcy model. The algorithm is shown as follows:

Algorithm 3.1.
Step I. Solve the nonlinear problem on a coarse grid: Find ug = (uy u, ¢u) €
W, pr.a € Qu such that for all v = (v,¢) € Wg, ¢ € Qm,

{Q(U/H, U) + d(U7pf,H) + b(uf,Hv uf,H7 V) = (f7 U)a

(17 d(ug,q) =0.

Step II. Solve a linear problem on a fine grid based on Newton iteration: Find
ujp = (u?mqﬁ;;) € Wh, p}, € Qn such that for all v = (v,¥) € Wh, q € Qp,
a(uy,,v) +d(v,py ) +b(ug m; uf p, v) + (W} i upm, v)
(18) = (f,v)+b(uf,H;uf,H,v),
d(uy,q) = 0.
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Step III. Update on the same fine mesh: Find u” (uf, ") € W, pf € Qn
such that for all v = (v, ), ¢ € Qn,
a(ul,v) + d(v,p’}) + b(uy, m; u'},v) + b(u'}; Uy p,Vv)
(19) = (fv) +b(upm;afy, v) +b(uy s upm — gy, v),
d(u",q) = 0.
Next, we derive stability and error estimates of the presented method for
the Navier-Stokes/Darcy equations.

Theorem 3.1. Suppose 0 < d <1 withd =1— \(;9}:;?2 . Under the assumption

of Theorem 2.2, (uﬁh, ¢r) defined by Step II of Algorithm 8.1 satisfies

(20) 2D} e, e + o 1KY 2V 2, < 0 RE.
Moreover, (u?, @") defined by Step III of Algorithm 3.1 satisfies
(21) 2D (uf) |22 + o K 2V6" 1o,y < 07 RS,
where
o« ,  eC3CE . 5 r}g°C3 C3R*C§

g = 07555 Rl -0 ||f1||L2(Qf)2 + C2 ||f2||L2 (£2p) + 451/305

and
s 3eC3C%, . p39°C3 3C2R2R2CS  3C2RICS

5= TCE]”fl”LQ(Qf)? + Ao C2 ||f2\|L2(Qp) + 200 s30T Se0 O
Proof. Firstly, we consider the stablhty of (u},, #;). Taking (v,q) = (uj,, p} 1),
Le., v=(v,¥) = (u},,¢;) = u; and ¢ = p},, in (18), we have

a(up, up) + d(up, Py ) + b(ag ;g .y ) + b(ag 5 upm,uy )
(22) = (fyup) +0(ay gy m,uf ),

d(“%??,h) =0.
Noting that ar(uj,, uy,) = 0 and b(uy, g5}, u},) = 0 yields

aq, (U}, ut ) + aq, (o4, ¢1)

= (f,up) +b(usmsup g, u}y,) —b(uysuypm,uy ).
By using (9) and the triangle inequality, we get
(24)
2ve|D(uj )| 720,02 + C5IIK Ve[ 7a,)
< el(fr,uf ), [ +pr9l(f2, Oh)a, [+ b(up s ag m,af )| +0(a} s g m,uf )l

Then, applying the Holder, Poincaré, Young inequalities and Theorem 2.2,
it follows that

2ve
HD(ufh)HL2(Qf)2+||K1/2V¢h||L2 (©,)

(23)
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\ /\

1 x
C |(f17ufh)ﬂf|+ |(f2a¢h)ﬂ |+ | (up,msugm,uyy)|

1
+ @\b(u;,h;Uf,H,u’},h)l

80204
s D} )22 If1ll 22 +

+ CO C4

PfgCg

IA

IVehlZ2q D f2llrz0,)

ID(af )22 ||D(uf7H)||2L2(Qf)2

C’C’
Jr04

HD( )HLZ(Qf)?”D(uf H)||L2(Qf)2

< 2D e + S Il e + 22296 o,
j;jm%n Flla,) + 28 C & D) 2,0 + 5o D7) 2000
COC“HD( W2, y2 D) 2,

A G 810, 2 + 51K 05 200,

179°C3 (121%406 CORC4

2
+ P CZ ||f2||L2 @, T 8eCs1? \ﬁC’ D} )72 ;)2

Let 6 =1— 595;/024 , and assume 0 < § < 1. Then we have

9 * *

652V||D(Uf,h)||%2 @2 T ||K1/2V¢h||%2(szp)

eC2C? p39°C3 CR'CY
VC- [£11172(0,02 + A CZ ||f2HL2(Q )+ 10505

(25)
<

Further, set 0 = 0%57 we arrive at
20|D(uf )70, + 0 K2V [72q

(26) L [eC3CE p39°C3 C2RACS
<o TCSHfIHL?(QfP + Ao C2 Hf2||L2(Q + 150y |

Next, taking (v,q) = (uh,p?), ie., (v,¢) = (u?,(bh) and ¢ :p}} in (19), we
know that
a(ul,u) + d(uh,p’}) +b(uy m; u?, u?) + b(u’}; uy p, u?)
(27) = (f,u") +b(ug,m;ufy, uf) +b(uf,;upm —ufy,ulf),
d(u hapf) =0.
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By ar(u”,u) = 0 and b(uf’H;u?,u?) = 0, we obtain
aq (u?v u’;) + aq, ((bha ¢h)

= (f,u")+b(agm;uy,, up) +b(uy s upm—uy p, up)—b(ag;up g, uy).
Analogously,

(28)

2ve||D(u})]| L2 (o)) + C5||K1/2V¢h|\2L2(Q,,)
(29) < e|(fr,ul)o, [+ prgl(f2, 6", | + [b(us, s u} . ul)|
b s — 0 ) [, )]
Hence,

(30)

2ve
7HD(uf)||L2 @2+ ||K1/2V¢hH%2(QZ))

IN

Prg h
€5|(f17uf)ﬂ,,v| + 75|(f27¢ ), |

1 1 . 1

+ o o0y s u?)|+55|b(u} niUgH — Upp, u’})l+f\b(U?; uy, i, uy)|

50204
Cs

IN

9
D) 22 (00,02 £l 220,02 + f 3||V¢h||L2(szp)Hf2||L2 a,
2C,C
&HD

+ (ur.m)llrzpz DU} )l L2z HD(U?)HLZ(Qf)2

CoC4

D} )17, D@ 20))2

+

C’OC’
D720, )2 ID (s )22,

A NS
b ol + B ID )P0
b D+ D DG )+ s DO g
+ L D W 0

3602 C4

< ?“D(uf)||L2(Qf)2 + 121720,y + *||K1/2V¢ 720,

N r39°C3 a2 3COR2R§C§' 3C2RICS
2AminC2 2Lz deov3Cy 16e0213C5
CoRC3

+ =
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By simplifying, we can get

9 C()R03
65(1 - m)2V||D(U?)||2L2(Q,-)2 + ||K1/2V¢h||%2(9 )
3:C3C2 p}9°C3 3C2R2R3CY
(31) < 2;054 If1llz20;)2 + f AoinC? ||f2||L2(Qp) 205T361*54
3C2R1CS
8ec2v3Cy’
Set 0= &0 =& (1—591?52 )anduse0<5<1toyield
20D (u}) 1720,y + 0 K2V 720,
3eC2C? ,0 g*C3 3C2R2R3CS  3CZRICS
~1 4 0 10y 01110y
=0 ( 2vC5 Ifllz2c0) + Ami C’QHfZHLQ(Q’J)Jr 2e013C5 Reo213(C5

O

Theorem 3.2. Let (uy, ¢,py) € H*(Qf)? x H2(2,) x H'(y) be the solution
of (7). Then, under the assumption of Theorem 3.1, we have the following
estimate:

[D(uy — u}})Hm(Qf)? +[IV(¢ - ¢’h)||L2(Qp) + llpy *P?Hm(ﬂf)
< C(h+ H)ugllmz2 + 10l m2(0,) + IP£ 11 2)))5

where € is arbitrarily small.

(32)

Proof. Firstly, we consider the error of Step II of Algorithm 3.1. Subtracting
(18) from (7), we obtain
(33)
ag,(uy —uj,,v) +aq, (¢ — ¢p,¢¥) +ar(u — up,v) +d(v,py — p} )
+b(ug;uy, v) +b(us giup g, v) —b(us giup,, v) — b(u;,h;uf,H,v) =0,
d(u —wuy,q) =0.
For the trilinear terms, it is easy to verify that
b(upsuy,v) +b(uy gy, v) = b(uym;ag,, v) = b(uf ;upm,v)
(34) = ob(upm;uy—uy,,v)+b(uy —uj,;upm,v)
—b(uf —upm;ur g —uyp,v).
Let us denote
—x1 = (uy = Mpuy) = (uf, — Myuy),
—& = (0 — o) — (¢, —no),
n2 — &2 = (pf — upy) — (P} — Unpy),

where II; s denotes interpolation of s in its finite element space, and s = uy, ¢
and py.
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Then we choose v = x1 € Hypo, ¥ =& € Hpp and ¢ = & € Qp in (33)
and combine (34) to yield

aq, (X1, X1) +aq, (§1,&1) +b(x1;ur,m5, X1)
= aq,(s1,x1) + aq, (M, &1) + ar(u — ujp, up — Myu)

(35) +d(x1,ps — Unpy) + b(ug, a6, x1)
7
+b(cisup,m, x1) — b(uy —upmiupg —up, x1) = ZRi~
i=1
Using (9), the left-hand side of (35) is bounded from below by

CoRC}
V203/2¢
Next, applying Poincaré, Young inequalities, Theorem 2.2 and Theorem 2.3,
we estimate the terms of the right-hand of (35) as follows:

(36)  Lh.s>ve (2 - ) IDO) B, s + prg K 2V6 20

[R1| < 2ve||[D(s1) [ 22,2 D) 22052 + Cllctllz2@yz X1l 2(r)z
1
< 6ve|D(1) 20,2 + G IPOD) 2202

+ CCEC2ID (1)l 20,2 ID(x1) [l L2022

3C%CiCs
QV; : ”D

Ve
< 6relD (<)l Z2 0,2 + (D22 + 5 PO 0 2

ve
< Ch2(||uf||H2(Qf)2 + 19l z2(0,) + ||Pf||H1(Qf))2 + §||D(X1)||2L2(Qf)27
[Ra| < prglKY2Vnil| 12, 1KY 2V || 12(0,)
Prg Prg
< %HKUQV?hHiZ(QP) + %HKUQV&H%%QP)

Prg
< Ch* (g2, + 192, + Ipsllaie))® + %HKlmV&H%z(QP),

[Rs + Ro| < 20003 ID(ug. i) 120,02 D) 22202 DO 2202
6C3C¢ ve
< =D (g, D) 720, + 5 D0 20,2
ve
< CR3(lug 20 e+ 1@l + 1 i 0)+ T IDO) 2 o

(Rl < Calluy — g5l eIV (e — )l g 2 IVl 2o

< Ci0Fuy —upnllizio, ) D@ —up)llt, 2 DXz (o))
_ sczc
- 2ue

2

(lay —upmll2(o,2) (D (upm —up) 1726, 2)
ve
+ F||D(X1)||%2(Qf)2

< C[H?’_e(”uf”m(szf)z + 119l z2(0,) + prHHl(Qf))?’_E]2
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ve

+ FHD(Xl)H%Z(Q,«)%

Similarly, we have
ve 9 3C3 .

|Ra| < |d(x1,m2)] < E”D(Xl)”L?(Qf)z + EH%HB(Q”

(37) < CR*(llugllgzio2 + 19l m2,) + IPfllaie,))?
ve
+ F||D(X1)H%2(Qf)2~

Besides, for R3, we obtain

|R3| =

€Pfg/ [mx1-ny — &6 - ny]
I

<epsgllmllrzalixt - ngllreayz +eprglléallzayllss - nyllzzr)e

< eprgCaCrCs([|Vmll 2o ID(x)llz20,)2 + Dsll2(0,)2 [Vl L2 (,))

3ep79°CC3CE
2v

)\minpfg

< D)l e+ 2

L E2pr9CiCFCE
A .

Ve
< Oh2(||uf||H2(Qf)2 + ¢l z2(0,) + HJUfHHl(Qf))2 =+ EHD(Xl)”%?(Qf)?

IV, + IVELl72,)

ID<1[[720, 2

Prg
+ T”Kl/QVle%z(Qp)-

Further, by using the results of the above estimates, the right-hand side of
(35) is bounded by

r.h.s < Ch2(||uf||H2(Qf)2 + 19l z2(0,) + ||prH1(Qf))2 + V5||D(X1)H%2(Qf)2
+ C[H3_€(||uf||H2(Qf)2 + 19l 20, + ||prH1(Qf))3_€]2
3
(68)  + KV, ).

Then, combining the above two inequalities (36) and (38), we get
Pry
(39) ved [P0l Ta(a,2 + = 1K VéillTa(a,)

< CR*([ugllmz(0)2 + 19l a2, + sl 0p)°
+CIH* ™ ([uyll 20,2 + 19l a2(0,) + IpsllH10p) %

where 6 =1 — CoRCY In addition, we have
V2usd/2e” ’

(40) ID(uy —u} )22 + IV = op)ll20,)
< Ch+ H*=)(uglla2a,)2 + 10llm2@,) + ol m@;)))-
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Secondly, we give the error of Step III of Algorithm 3.1. Subtracting (19)
from (7), we have

an(llf - u};,v) + aﬂp(¢ - ¢h>1/}) + GF(U - uhav) + d(v7pf _P?)
+b(ug;up,v) —b(uy m; u?,v) — b(u?; uy g, v)+b(us m; u} V)

(41)
+b(ufupm —upy,v) =0,
d(u—u" q)=0.
Similarly,
blug;ag, v) +b(up i upy, v) +b(uy piup g —ufy, v)
— b(u?; usm,v)—b(us g; u?,v)
(42) = b(uf,H;uf—u?,v)—!—b(uf—u?;ufﬂ,v)

—b(uy —uymgiufy, —up,v) —bluy —uj,;ur g —uyp,v)
- b(u},h — Uy; u},h —uy,v).
Moreover, we need some analogous definitions for the later derivation:
<1 —xa = (uy — Iyuy) — (uf —Iyuy),
T =& = (6 — o) — (8" — o),
Ty — & = (py — Unpy) — (P? —Ippy).

Taking v =%, € Hypo, ¥ =& € Hyp and ¢ = &, € Qp, in (41) and combining
(42) yield

(43)
aq; (X1, X1) + ag, (&1,&) + b(X1;upm,X1)
= ag, (S1,X1) + aq, (71,&;) + ar(u — u*, u" = yu) + (X1, py — Mapy)
+ 015 up g, X1) +0(uy m;S1,X1) — b(uy —uyp g;u}y, —up,Xg)

9
—b(uy —u}piurm —up,Xy) —b(uf, —upuf, —up,x;) = ZRi'
i=1

Do the same as (36), the left-hand side of (43) can be bounded by

CoRC3 _ _
(44) Lh.s > ve (2 - \/31/3/246> H]:)(Xl)”QL?(Qf)2 + PngKl/Qvle%?(Qp)-

Since R; are similar as R;, i = 1,2,3,4,5,6, it is easy to get
|Ry| < 0h2(||uf||H2(Qf)2 + 19l z2(0,) + ||prH1(Qf))2
ve _
+ Z D) 320y
|Ra| < Ch2(||uf||H2(szf)2 + 19l z2(0,) + ||PfHH1(szf))2
Pry =
+ S IKYAVE [

»)’
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[Rs| < OW*(fuy 2,2 + [6l2(0,) + Ipllan o))
+ S IDE) e, + LK 2VE 7o, .
(Rl < CR*(fug 2,2 + 6l2(0,) + Ipslln o))
+ 5 IDEDIE2 0,2
|R5 + Rg| < Oh2(||uf||H2(Qf)2 + 19l z2(0,) + ||PfHH1(Qf))2
+ S IDG) 7202

Now, we bound the last three R;, i = 7,8,9. By using (9) and Theorem 2.2,
we can attain

|R7 4+ Rs| < 2C,C3D(us—ug )20, )2 (D}, —up)llL2 ;)2 DX L2 o))

4C2CS
< 5€4||D(uf ufH)||L2 ()2 )2 [[D(u} ), — uf)HL?(Qf)2

+Z||D(Y1)||L2(Qf)2

CH?(h? + H)(luyllmz(a,2 + 10l m2c0,) + Ipsllm10,))*
ve _

(45) + Z”D(XI)H%Q(QJ»)Z'

IN

For Ry, we use the second inequality in (8) to get

Rl < Calluy, — wsllhzo, IV (s — w2V 202

CLC3u} 5 — wyllLan, e 1D} — up)l[ b, 12 DX (a2

20207

I/E

IN

IN

(Il = uslaio, e 1D (W55 = ug) 13, 2
||D(X1)||L2 Q)2

C(h+H3 Vuglaze,e + 18l m2@,) + Ipsla@))?

+§||D( 1)||L2 Q)2

IN

By using the above estimates, the right-hand side of (43) is bounded by

_ 3prg
rhos S velD(X) 72,2 + 75 1KY 2VE 7200,

+ Chz(HufHH?(Qf)? + 119l 20, + ||pf||H1(Qf))2
(46) + CH?[P® + (H3_6)2](||uf||H2(Qf)2 + 19l z2(0,) + ||pf||H1(Qf))2

_ 3prg
< ve D)2,z + =~ K 2VE 20,

+ C[R? + (H* ) (ugllm2ca,2 + 10l m2(0,) + IprllH10,)) 7
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Combining the above two inequalities (44) and (46), we can get

g —
PO |K'2VE, |2,

< ClR2 + (Bl 2,z + N6l + Iosllm @)
Then we can obtain
(48) ID(uy — )22 + V(6 — ")z,
< C(h+ H)(lugll 22 + 19120, + 125l @p)-

Furthermore, thanks to the discrete inf-sup condition (11) one finds

ved||D(x)||? +
(47) D720,

Blips — P2,

d(v,py —p})
[vllw

2ve||D(uy — u?)

IN

L2z + 5%”(% - u?-) T2 )2
(49) +eprgCaCrCs([|V (o — ¢h)||L2(Qp) + [|D(uy - u?)HL?(Qf)?)
+prg| K12V (6 = 6" 120, + CoCEID(uy —u} )72, )2
+2CoC3 D (uy —us m)llz2 (02D (uy — u} )l 20,2
+2CoC D (us )l 2,2 ID(uy — w2,
< C(h+H* ) lugllmzo, + 10llmz@,) + Ipslla@,))-
Finally, gathering the (48) and (49) leads to (32). O

4. Numerical experiment

In this section, numerical experiment is to verify the numerical theory of the
two-level method for the Navier—Stokes/Darcy model developed in the previous
section.

We present some numerical results of the Navier—Stokes/Darcy problem un-
der a known analytical solution with the computational domain , = [0,1] x
[0,1] and Qf = [0, 1] x [1,2] with the interface I = (0,1) x {1}. In this paper,
the exact solution is given by

2
uy = (= 0+~ Zaly - 1P + 2= min(e)).

ps = [2 — wsin(7z)]sin (gy) , ¢ = [2 — mwsin(7x)][1 — y — cos(my)].
The force terms f; and fy are determined by (1) and (4), respectively. For
simplicity, the model parameters py, g, €, a equal to 1 and K = 1.

For a given h, we consider that the H satisfy h = O(H*) for Algorithm 3.1
and h = O(H?) for the common two-level finite element method. We list the
numerical results of Algorithm 3.1, the one-level method and common two-level
finite element method in Tables 1-3. From these tables, we can see that three
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methods work well and keep the convergence rates just like the theoretical
analysis. Besides, Algorithm 3.1 is competitive with the common two-level

method in accuracy, especially for the pressure.
coarse mesh of Algorithm 3.1 can be chosen as a coarser one.

In addition, we compare the computing time of Algorithm 3.1 with the one-
level method and the common two-level method in Tables 4-5. As expected,
our algorithm spends less computing time than the other two methods under
nearly the same accuracy. In conclusion, Algorithm 3.1 is more efficient than

the other two methods.

However,

as expected, the

TABLE 1. The one-level method for the steady Navier—
Stokes/Darcy model.

D(u;—ut —ph —_oh
po IRty uplo H(D(fuf)‘/‘z”o Rate Hprppr{]HO Rate \\Vﬁd%jﬁn)\lo Rate
s 9.503E-2 4.431E-1 1.398E-1
% 5.223E-2 1.040 2.380E-1 1.080 8.125E-2  0.944
% 2.291E-2 1.016 8.645E-2 1.249 3.479E-2  1.046
A 1.259E-2 1.040 5.009E-2 0.948 1.930E-3  1.024

=
=

TABLE 2. The common two-level finite element method for
the steady Navier—Stokes/Darcy model.

D (u; —uf)

llo Rate

llps—p}llo

IV (6=¢")llo

H h wapl Iorle  f0te  Jvgp, —  fate
1 9.505E-2 —  4.588E-1 1.418E-1 —
% 1% 5.223E-2  1.041 2452E-1 1089 8.245E-2  0.943
: L 2988E-2  1.017 8.685E-2 1280 3.554E-2  1.038
T4 1925882 1.040 5.720E-2 0723 1.968E-2  1.028

TABLE 3. Algorithm 3.1 for the steady Navier—Stokes/Darcy model.

D(u;—u” 0 D *;Dh 0 V(p—op"
H h SErspl Rate VCHAY Rate WOl Rate
1 1.072E-1 —  5.061E-1 1.562E-1 —
% 1% 5.784E-2  1.073 2.040E-1 1.580 8.360E-2  1.086
i s 2500E-2  1.035 7.941E-2 1163 3.495E-2 1.075
: & 1310E-2 1123 4.502E-2 1.090 1.792E-2 1.111

TABLE 4. Comparisons of the one-level method and Algorithm 3.1.

Methods H_h_ CPU-time [[D(us —up)fo oy —pilo V(6 ="l
One-level - & 8320 3.738E-1 1.627E-1 3.868E-1
Algorithm 3.1 1 L 6.741 3.762E-1 1.760E-1 3.868E-1
One-level - & 2903.15 7.261E-2 2.872E-2 7.377E-2
Algorithm 3.1 1 L 129554 8.082E-2 7.115E-2 7.379E-2
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TABLE 5. Comparisons of the common two-level method and
Algorithm 3.1.

Methods H__h_ CPU-time [D(us —upfo [lps —pillo V(6 — ¢")llo
Common two-level % = 9.020 2.309E-1 8.198E-2 2.413E-1
Algorithm 3.1 3 & 6.741 3.762E-1 1.760E-1 3.868E-1
Common two-level ?11 3701.55 5.198E-2 4.927E-2 5.023E-2
Algorithm 3.1 L& 129554 8.082E-2 7.115E-2 7.379E-2
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