Prediction Approach with a Stiffness Measure in Nonlinear
Dynamic Analysis of Reinforced Concrete Structures
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ABSTRACT

Current seismic design philosophy for reinforced concrete (RC) structures relies on energy dissipation through
large inelastic deformations. A nonlinear dynamic analysis which is used to represent this behavior is time
consuming and expensive, parficularly if the computations have to be repeated many times. Therefore, the
selection of an efficient yet accurate algorithm becomes important.  The main objective of the present study is
to propose a new technique herein called the prediction approach with stiffness measure (PASM) method. In the
conventicnal direct integration methods, the triangular decomposition of matrix is required for solving equations of
motion in every time step or every iteration. The PASM method uses a limited number of predetermined
decompcesed effective matrices obtained from stiffness states of the structure when it is deformed into the
nonlinear range by statically applied cyclic loading. The method to be developed herein will reduce the overall
numerical effort when compared to approaches which recompute the stiffness in each time step or iteration.

Key words .| earthquake engineering, nonlinear dynamic analysis, reinforced concrete structure, time
history analysis, stiffness measure.

the solution procedures may be divided into

1. Introduction e o :
two categories; direct and indirect integration

The amount of research being done and the methods. In direct integration methods, the
body of literature extant on nonlinear dynamic equations of motion are expressed in real
analyses are large. According to the coordinate coordinates. Whereas the equations of motion are
system for expressing the equations of motion, expressed in normal or alternatively in Ritz

vector coordinates in indirect methods Nonlinear
¥ A8 - al5 UCLA Post. Doc, dynamic response of a structure is usually

" bt ARk 2at performed by means of a direct integration of the
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Prediction Approach with a Stiffness Measure in Nonlinear Dynamic Analysis of Reinforced Concrete Structures

equations of motion expressed in the real coord-
inates. Direct integration methods are well covered
in the literature.®~?

In the direct method, the evaluation of the
equation of motion in real coordinates, involves the
triangular factorization or decomposition and the
backsubstitution of the effective mass matrix in each
time step, that will require a significant comput-
ational effort when a large and widely banded
system is analyzed.

Let us consider the incremental equilibrium
equation” expressed at time t+4t.

MI{ 4 v (t+A+CH 4 v (++ A1)
+HK®OH do(t+ 41} 1)
={F(t+ 2HHMI{ 0 OHCH © (OHR(E)

in which, [M]= mass matrix; [C]= damping matrix;
{F(t)}= external loading vector; {R(f)}= restoring force
vector corresponding to the displacement of {v(t)};
{o®), {v(@®)} and {o(t)} are relative acceleration,
velocity and displacement vectors at time ¢
respectively; and {4 v (#+44)}, { 40 (t+ 48} and {4
v(t+ 4t)}, are relative incremental acceleration,
incremental velocity and incremental displacement
vectors at time t+ ¢t respectively.

With the Newmarks constant average acceleration
method for integration, Eq. (1) has the form

(ROt ) ={rte o o1 o+ 01 et} (a}- @)

where, [E(’)] is the effective stiffness matrix.

4
At?

[R0)]= 5= [M 1+ Zlc]+ [k ()] )

The equation for the increments of velocity and
acceleration are obtained in terms of initial
conditions. The evaluation of the Eq. (2) involves
the triangular factorization or decomposition of the

effective stiffness matrix, [ K(#], as follow®
[ROOI=LLU L1 @

where [ L]is the lower triangular matrix of [ K(5]
with the Cholesky factorization method. For the

band symmetric matrix of, the number of scalar
multiplications is nb’/2 for triangular decomposition
of the matrix and 2nb for the forward reduction of
load vector and the back substitution of a
triangular matrix.® If we can reduce the number of
the triangular decomposition during the simulation,
the efficiency of the dynamic analysis can be
improved because the significant part of the
computational effort is in performing triangular
decomposition of the matrix.

The tangent stiffnesses of the hinge regions
operating in nonlinear states can be linked directly
to the overall stiffness of the structure. In other
words, the nonlinear behavior of these structures is
completely controlled by the behavior of the hinge
regions. The overall stiffness can then be tied to the
generated information, ie., the decomposed matrix,
from a certain stiffness state. As simulation time
goes by, the nonlinear states of hinge stiffness
undergo changes and therefore a different set of
new generated information required to solve the
equations of motion is needed each time the
stiffness changes. The time varying EI for each
hinge can be readily determined from the 4-branch
relationship® given in Fig. 1 because the curvature
history of each hinge zone is known.
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Fig. 1 Q-Hyst. Model (After Saiidi and Sozen®)

Since there is the unique relationship between
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Prediction Approach with a Stiffness Measure in Nonlinear Dynamic Analysis of Reinforced Concrete Structures

the stiffnesses in hinge zones and the overall
stiffness of the structure, the unique relationship
between the stiffnesses in hinge zones and the
effective stiffness matrix exists. Thus, it is possible
to store and reuse the previously decomposed
matrix. In other words, if stiffness changes during
the dynamic analysis, equation solving only requires
backsubstitution of the decomposed matrix of the
most appropriate set among the stored sets.

In view of the computational effort of the direct
integration methods, the application of the modal
superposition methods to nonlinear analysis has
been an attractive idea, mainly because of the
ability of the method to give fairly accurate
solutions with only a few modes. The modal
superposition technique has already been applied in
nonlinear structural dynamic analysis. In the

eigenvalue  method? ",

the eigenvalues and
eigenvectors of the structure are updated at every
instant.  This method can require heavy effort
because of repeated calculation of eigenvectors. This
recomputation of eigenvectors is one of the major
disadvantages of the eigenvalue method. Chang(m
proposed a new approach that uses a limited
number of sets of predetermined eigenvalues and
eigenvectors from the nonlinear states of a structure
in the cyclic incremental static analysis. However,
it is difficult to predict the correct mode shapes of
complex structures by cyclic incremental static
analyses, because the response cannot be known in
advance. This problem becomes more difficult as
the ground acceleration record becomes stronger.
Chang presented results which show a discrepancy
between the direct integration method and the
approximate eigenvalue method. Assuming that the
solution from the direct integration method is exact,
the error in the approximate eigenvalue method is
due to the error caused when incorrect truncated
mode shapes are used for the transformation of the
nodal response to the real response. In order to
have truncated mode shapes available for the
stiffness state representing the stiffness states for
highly nonlinear deformation, a static loading used
in the deformed shape analysis should resemble the
incremental inertia force shape, which is almost

impossible to anticipate.

Unlike the approximate eigenvalue, ie., Changs,
method, the proposed method performs a dynamic
analysis in the real coordinates system, hence,
illuminates the incomplete problems of indirect

methods.
2. Analysis Algorithm

The analysis procedure is divided into two
phases; 1) the static phase, and 2) the dynamic
phase. In the static phase, the decomposed effective
stiffness matrixes are calculated based on the
predicted stiffness states by incremental static
analysis and thereafter in the dynamic phase, the
predetermined decomposed effective stiffness matr-
ixes in the static phase are utilized in calculating
the response of the structures. Since the information
necessary to perform the dynamic analysis is
predicted in static phase, the proposed method will
be called a Prediction Approach with a Stiffness
Measure (PASM) method. The computation pro-

cedure in each phase is summarized below;

Static Phase (Prediction Phase)

1. Apply static load incrementally

2. Calculate decomposed effective stiffness
matrix for new stiffness state.

3. Store stiffnesses of hinge zones and
corresponding decomposed effective stiff-
ness matrix. This combined set wil be
referred as  hinge  zone  stiffness
(HZS) set.

Dynamic Phase
1. Solve dynamic equations in real coor-
dinates, ie., Eq. (2).
2. If stiffnesses change, select a HZS set
predetermined in the static phase.
3. Continue response calculation with the
selected HZS set.

2.1 Static Phase

Structural behavior to an earthquake is generally
in a cyclic fashion. The nonlinear behavior of the
structure to cyclic load or deformation reversals can

be determined through a incremental step-by-step

M2 Mg (83 M13) 1997.3
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procedure with the, tangent stiffness iteration
method.

(KM & v, = (4P AR (5)

and,

i

b =l 2o} (6)

=t
where, subscript n=loading step number; superscript
i=iteration number; [K]i=tangent stiffness matrix; {A
P=incremental  static  load  vector,  {v,}'=total
displacement of loading step n after i-th iteration;
{ v.)'=incremental  displacement vector for the i-th

iteration; and {AR,}' = incremental restoring force.
To produce sets of stiffness states that will
closely represent the stiffness states in  dynamic
analysis, the pattern of static load vector is the
critical factor of this method. The static load vector

{AP}, used in Eq. (5) is expressed as
{4P,}=AL(m{S} 9

where, AL(n) = Static Load History (incremental
load scalar for load increment n); and {S} = Static
Load Shape.

In order to find out whether load increment {4
P} causes changes in the stiffness of the structure,
the curvature increment in  moment-curvature
relation at the plastic hinge zones of cach element
needs to be determined. When changes in the
stiffness occurs after a loading step, triangular
decomposition of effective stiffness matrix (Eq. (4))
is performed for each new stiffness set. The
calculated  decomposed matrix is stored with
corresponding stiffnesses of hinge zones in order to
be used during the dynamic analysis.

The objective of doing static analysis is to
predetermine the HZS5 sets for the dynamic
analysis. Thus, the following requirements for the
static load analysis should be satisfied.

Requirement 1. Maximum displacement of static
history must agree with dynamic;
when initial  static  histories
disagree with the dynamic result

they arc revised in each trial so

that the static maximum agrees
with the approximate dynamic

result.

Requirement 2. Numbers of static loop; Loops
which in  three or more
incremental  steps  reach  the
maximum  excursion must be
used in order to accommodate
the  possible nonlinear state
before the maximum dynamic

occurs.

As a static load history, AL(1), a cyclic static
loading procedure is employed in which each cycle
will allow more members to yield until the desired
ductility is reached. Recommend to reach ; (critical
story ductility) = 4. The critical story, i.c., the story
at which the most nonlinearity occurs, can be
predetermined by applying one directional static
load until the failure occurs, up to a specific
ductility level. The yield drift is found from the
static phase of analysis by observing the branch
number of the Saiidi Rule Fig. 1 of the members of
which a story is composed. When any one
member reaches the branch #2 of Saiidi Rule, ie.,
the plastic region, for the first time, the story drift
at that point is determined as the yield drift for
that story. The story yield drift could be defined
as the drift after which the stiffness of that story is
starting to decrcase (not the stiffness of the whole

frame).

2.2 Dynamic Phase

The only difference in the dynamic solution
procedure between this proposed method and the
conventional step-by-step dynamic analysis methods,
is the equation solving. The triangular decompositions
of effective stiffness matrixes are not required to be
performed during the solution procedure by using
the best available decomposed effective  stiffness
matrix of the best suitable HZS set among the
predetermined sets. The sclection of the most
appropriate HZS sct at each new stiffness states of

the structure while performing dynamic analysis

4 TFRTNHFTHI =2&
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can be achieved by the use of the stiffness ratio

technique'”™

In order to select a proper HZS set
among the stored sets, member stiffnesses of stored
HZS sets are compared to the current member

stiffnesses using the relation

MAX (
z MIN(

i=

(ED);,
(ED); ,

(ED)
(ED)})

dvit stor

SM* 8

1 N
Nz 1 dvn star

where, SM* is a stiffness measure for HZS set k N
is total number of hinge zones; dyn(EI)i[ = the
dynamic El of hinge zone i at time # and gm(El)lk =
the stored EI of hinge zone i for stored HZS set k
obtained from deformed shape analyses. The
dynamic stiffness state is indicated by su(ED! , ie.,
the slope of the moment curvature relation for each
hinge zones in the structure. Since the larger El
value in Eq. (8) is in the numerator and the
smaller El value is in the denominator, the ratio
will exceed unity except when the stored and
dynamic Els are equal. Thus, SM" represents the
average value of the stiffness ratios of the hinge
zones. The SM value will always be equal to or
greater than unity. When the SM value is closer to
unity, the stiffness state of the HZS set is closer to
the dynamic stiffness state. The HZS set with the
smallest SM value corresponds to the best available

set among the stored HZS sets, ie,
SM, = MIN(SM',SM*,---,SM ") ©9)

where, SMwun is the smallest SM value and M is a
total number of stored HZS sets.

According to the moment-curvature relation, e.g,
Q-Hyst Model” Fig. 1, the stiffnesses of hinge
zones can be traced for displacement, {v(t+Af)}. As
the stiffress changes, the SM values (Eq. (8))
between the current stiffness state and stiffness
states of the stored decomposed matrix sets are
evaluated. The decomposed effective mass matrix
of the HZS set with SMMIN will be chosen and be
used for the next time step. In other words, if
stiffness changes during the dynamic analysis,
equation solving only requires backsubstitution of
the decomposed matrix of the most appropriate
HZS set among the stored sets.

Depending on the nonlinearities in the system
and the length of the time step, At, the explicit
methods may introduce serious errors."”
Equilibrium errors will occur in solving the
equations of motion. These errors will accumulate
from step to step. This will result in inaccurate
dynamic analysis because response calculation at
one time step is always dependent on the previous
response history. The accumulated errors can be
diminished by solving the equations of motion with

iteration.™”

Since this proposed stiffness measure
approach uses the precalculated decomposed matrix
based on the stiffness states caused by static
loading, the equilibrium iteration is necessary to
calculate the correct dynamic response of a
structurc.  The response  from  the  explicit
formulation, Eq. (1), can be a first guess of the
iteration at each time step. The equations of

motion in real coordinates for iteration are given as;
[K(+an]{sv} = R+ Ax)}"’ i>1  (10)

Where,

{Re+a] =[Revan} - Mfit+a0) Hcl(ite a0} {Reva} (1)

where, {do}={o(t+a0)}-{o(++48))"; and superscript i
denotes an iteration number and greater than 1.
Eq. (10) can be solved for the incremental
acceleration of the i-th iteration, {§v}. In order to
evaluate the restoring force, the displacements in

generalized coordinates need to be evaluated by
{o(r+ a0} = {v(e + An)} ™ + {6V} (12)

Then we can calculate the restoring force, {R(t+At)},
corresponding to the real displacements of the i-th
iteration, {o(t+4f))’.

As the stiffness changes, the SM value (Eq. (8))
between the current stiffness state and the stiffness
state of the previous iteration is calculated. The
decomposed effective mass matrix of the HZS set
with SMMIN will be chosen and be used for the
next iteration. The iteration process should be
continued until the convergence tolerance meets the

allowable value within a time step. The convergence

Mz s (8 HW1g) 1897.3
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tolerance used here is the ratio of absolute values

of incremental displacements and total displacements,

lto w1 < CONV (13)
[tvmr| =
in which CONV is the maximum allowable value
for the convergence. When Eq. (13) is satisfied,
continue the response calculation to the next time
step. The process may be continued step-by-step

until any desired time.

3. Numerical Example

The present research is not directly concerned
with direct integration method except as a means
of  comparison for  solution  results and
computational time. The response calculated by the
direct  integration with  Newmarks average
acceleration method is treated as a standard
solution for the purpose of evaluations of other
methods. A 5-story 2-bay planar moment resisting
frame Fig. 2 given in Ref. (21) is used in this
presentation for testing of the various step-forward

integration methods.

3.66m

366m

3.66m

3.66m

3.66m

- 762m -— 762m =

Fig. 2 Configuration of Ductile 5-Story 2-Bay Strong
Column/Weak Beam Moment Resisting Frame?"

The frame behaves as a strong column/weak
beam structure, ie, the preponderance of hinging
occurs in the beams. The frame is mathematically
modeled with elements which have hinge zones at
each end

The moment curvature relation used for the
hinges is based on the Qhyst model” , and is

shown in Fig. 1. The post-yield slope of the
moment-curvature relation, ie., branch (), is
assumed to be 0.5% of the elastic value. Lumped
masses are placed at the beam-column joint
coordinates. Viscous damping is assumed to be
proportional to the mass. The proportionality
coefficient was chosen so that a decay equivalent to
5% of critical damping of the first elastic mode was
achieved.

The section properties (Table 1) are found while
assuming well confined cross sections.” The frame
has the elastic fundamental period of 0.84 sec. The
seismic coefficient, ie., the base story yield shear
divided by the building weight, was 0.352. This
coefficient is in the normal range. The frame was
subjected to the SI6E component of the 1971
Pacoima Dam record™ (Fig. 3). The record is
considered to be severe because of the high values
of peak velocity and acceleration.

We chose it for the present study because strong
nonlinear begavior was guaranteed to occur.

A cyclic static loading procedure is employed in
which each cycle will allow more members to yield
until the first story drift ductility is reached 4. The
resulting hysteresis curve of the cyclic static loading
is plotted on Fig. 4. The static loading produced 59
different HZS sets to be used in the dynamic
Phase.

Two time histories, i.e., base shear and roof
displacement (Fig. 5) are selected and used for
comparison. We see that the quantities in Fig. 5
obtained by direct integration and the proposed
PASM method are practically identical. The
maximum displacement envelops are also compared
in Fig. 6. The numerical results by the proposed
PASM method are compared with other methods in
Table 2. The accuracy achieved in among the
compared methods is comparable. When the
dynamic analysis is performed with iterations, a
larger time step can be used for a converged
solution. There is a substantial reduction in
computing effort achieved by this method when
compared with some of the available analysis
methods (Table 3). The proposed PASM method has
approximately 9% to 18% less computing time
required for the direct integration method.

6 IUIXNTTUY =EE
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Table 1 Section Properties for 5 story Strong Column/Weak Beam Frame

Cross Section Reinforcement Axial Force Ela , M,
{cm X cm.) (kN) (MN-m") (MN-m)
1st ext. columns 55.9x55.9 12#10 397. 21 118.1 124.2
Ist int. column 61.0x61.0 12411 693.44 155.9 163.1
2nd ext. columns 55.9x55.9 12#10 311.80 1159 122.0
2nd int. column 61.0x61.0 12#11 543.10 151.9 158.9
3rd ext. columns 55.9x55.9 12#10 22596 113.8 1199
3rd int. column 61.0x61.0 12#11 392.76 1479 154.7
4th ext. columns 55.9x55.9 12# 9 140.11 93.5 96.1
4th int. column 61.0x61.0 12#10 242.86 1229 123.7
Sth ext. columns 55.9x55.9 12# 9 63.16 913 94.2
Sth int. column 61.0x61.0 12#10 115.65 119.0 120.1
(top) 6#8, 2#7
1-3 story beams 55.9x76.2 (bottom) 448 0.0 189.8 103.2
4-5 story beams 50.8x63.5 (;(t))zit:rﬁz);, ‘3:;7 (()) 111.5 80.5

For the columns: Ely and My are found using the Mander et al.”” idealization,
@2

For the beams: El; and M, are averaged values obtained from the Mander et al. idealization
Ground Asseleration(g) Base Shear (kN)
1 2250
1500
750
0
-750
1] 5 10 15 20 25 V ’ ;0 3;’: 46 .1500-30 -;O -1‘0 0 1‘0 2‘0 3‘0 40
Time(seconds) Roof Dispiacement (cm)
Fig. 3 1971 Pacoima Dam Earthquake Record Fig. 4 Hysteresis curve by static loading
Table 2 Comparison of maximum response quantities
B: Sh R i
Analysis Type Iteration ase Sheal " oof Dlsplacemenf
(kN) % (cm) %
Direct Inteeration Without 1551.46 0.00 31.45 0.00
g With 1573.26 1.67 3145 0.00
Bigenvalue Without 1556.80 0.60 31.12 0.89
g With 1576.37 1.87 31.37 0.24
Without 1554.58 0.02 31.23 0.70
PASM method
me With 1574.15 1.72 3151 0.19

1. Difference in percent compared with corresponding values obtained using direct integration method
without iteration
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4. Conclusion

A method for nonlinear developed.

With this

method, it is not necessary to perform a triangular

decomposition of the effective

stiffness

matrix

whenever the change in the stiffness occurs. The

advantage of this method

not only

the

improvement on the efficiency in computing, but

also the ability to obtain the valuable information

Roof Dispiacement (cm)
30

20

i /\A TV

©

-20

-30

-40

\J\ \f/\/‘,'v'v"vw'—vv"

o 5 10
Time {seconds)

156

PASM method PASM msthod

Direct Integration

{with iteration) (without iteration)

Base Shear {kN}
2000

1500

1000

=

- A f\ W AAAMAA A Ny paiinn, et

ST T

-1000
-1500
-2000 L L
[ 5 10 15
Time {seconds)

Direct integration Mehtod PASM (with iteration) PASM (without fteration) !

Fig. 5 Comparison of Response Time Histories

20

by performing static analysis; e.g., story vyield
displacement, recognizing the critical floor where
most severe nonlinear behavior occurs. The stiffness
measure  compares  stiffnesses of  previously
evaluated states of deformation with stiffnesses of
the current dynamic state. The concept is useful
for identifying and using previously generated
information.

Story Number

5

0 5 10 -15 20 25 30 35
Displacement (cm)

PASM Method PASM Method

with iteration without iteration

+= o --e-

Direct Integration

Fig. 6 Comparison of Maximum Displacement Envelopes

Table 3 Required time step and computing time for converged solutions

Analysis Type Iteration At (second) Computing Effort(%)"
Direct Inourat Without 0.005 100.00
1r il Taron
ect Tniegratio With 001 113.00
el Without 0.005 233.96
lgenvaiie With 0.01 229.87
Without 0.005 82.39
PASM method -
With 001 91.51

1. Computing time in percent compared with corresponding values obtained using direct

integration method without iteration

2. First five modes have been used for analyses

8 ZIXNTFTUI =2E
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