• Title/Summary/Keyword: Isotropic strain

Search Result 240, Processing Time 0.022 seconds

The Overstrain of Thick-Walled Cylinders Considering the Bauschinger Effect Facto. (BEF)

  • Ghorbanpour, A.;Loghman, A.;Khademizadeh, H.;Moradi, M.
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.477-483
    • /
    • 2003
  • An independent kinematic hardening material model in which the reverse yielding point is defined by the Bauschinger effect factor (BEF) , has been defined for stainless steel SUS 304. The material model and the BEF are obtained experimentally and represented mathematically as continuous functions of effective plastic strain. The material model has been incorporated in a non-linear stress analysis for the prediction of reverse yielding in thick-walled cylinders during the autofrettage process of these vessels. Residual stress distributions of the independent kinematic hardening material model at the onset of reverse yielding are compared with residual stresses of an isotropic hardening model showing the significant effect of the BEF on reverse yielding predictions. Critical pressures of direct and reverse yielding are obtained for the most commonly used cylinders and a range of permissible internal pressures for an efficient autofrettaged process is recommended.

Three-Dimensional Field Equations, Equations of Motion, and Energy Functionals for Thick Shells of Revolution with Arbitrary Curvature and Variable Thickness (임의의 곡률과 변두께를 갖는 두꺼운 축대칭 회전 셸의 3차원적 장방정식, 운동 방정식, 에너지 범함수)

  • 강재훈;이은택;양근혁
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.156-166
    • /
    • 2001
  • This work uses tensor calculus to derive a complete set of three-dimensional field equations well-suited for determining the behavior of thick shells of revolution having arbitrary curvature and variable thickness. The material is assumed to be homogeneous, isotropic and linearly elastic. The equations are expressed in terms of coordinates tangent and normal to the shell middle surface. The relationships are combined to yield equations of motion in terms of orthogonal displacement components taken in the meridional, normal and circumferential directions. Strain energy and kinetic energy functionals are also presented. The equations of motion and energy functionals may be used to determine the static or dynamic displacements and stresses in shells of revolution, including free and forced vibration and wave propagation.

  • PDF

Anisotropy of the Hall Factor According to the Growth Direction in the Two-dimensional Device with Indirect Conduction Valley (간접천이대를 갖는 2차원 소자에서 성장방향에 따른 Hall 인수의 이방성 연구)

  • Kim, Jong Gu;Lee, Jae Chul;Chun, Sang Kook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.7
    • /
    • pp.428-432
    • /
    • 2014
  • The Hall factor in a two-dimensional device with indirect conduction valleys is calculated for several growth on various strain conditions. In the [001] or [111] growth direction, the two-dimensional constant energy surfaces of occupied valleys are shown to be isotropically distributed. However, in the [110] growth direction, the distribution of occupied valleys on the plane is not isotropic. This fact is the reason for the anisotropic Hall factor on the sample plane.

Buckling Behavior of Elastically Restrained Orthotropic Plates (탄성구속된 직교이방성판의 좌굴거동)

  • 윤순종;정상균
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.17-25
    • /
    • 1999
  • In this paper, we present the analytical study results of buckling behavior of elastically restrained orthotropic plates. In the study the boundary conditions of the plate are simply supported at all four edges and elastically restrained by the elastic medium at opposite two longitudinal edges. The energy method is employed in the solution of the problems in which method the buckling coefficient is calculated from the condition that the work-done by the external forces during buckling is equal to the stored elastic strain energy. The results are presented in the graphical from. The equations derived for the orthotropic plate in this study are compared with existing isotropic ones and identical results were observed.

  • PDF

Hardening of Steel Sheets with Orthotropy Axes Rotations and Kinematic Hardening

  • Hahm, Ju-Hee;Kim, Kwon-Hee;Yin, Jung-Je
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.91-97
    • /
    • 2000
  • Anisotropic work hardening of cold rolled low carbon steel sheets is studied. The experiments consist of two stage tensile prestraining and tensile tests. At the first prestraining, steel sheets are streteched along the rolling direction by 3% and 6% tensile strains. The second prestrains are at 0${\cric}$, 30${\cric}$, 60${\cric}$to the rolling directions by varying degrees. Tensile tests are performed on the specimens cut from the sheets after the two stage prestraining. A theoretical framework on anisotropic hardening is proposed which includes Hill's quadratic yield function, ziegler's kinematic hardening rule, and Kim and Yin's assumption on the rotation of orthotropy axes. The predicted variations of R-values with second stage tensile strain are compared with the experimental data.

  • PDF

Buckling for an Interface Crack Between an Orthotropic Layer and a Half-Space (직교이방성 층과 반무한체 사이의 계면균열에 대한 좌굴)

  • 정경문;범현규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.815-818
    • /
    • 2001
  • The buckling of an orthotropic layer bonded to an isotropic half-space with an interface crack subjected to compressive load under plane strain is considered. Basic stability equations derived from the mathematical theory of elasticity are applied to describe the buckling behavior. A system of homogeneous Cauchy-type singular integral equations of the second kind is solved numerically by utilizing Gauss-Chebyshev integral formulae. Numerical results for the buckling load are presented for various delamination geometries and material properties of both the layer and half-space.

  • PDF

A study on the shear strength considering matric suction for an unsaturated soil (모관흡수력을 고려한 불포화토의 전단강도에 대한 연구)

  • Oh, Se-Boong;Kim, Tae-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.105-110
    • /
    • 2008
  • The behaviour of an unsaturated soil was analyzed by performing $K_0$ consolidated triaxial tests. Unsaturated triaxial tests were performed with matric suctions for weathered soils and could catch stress paths under consolidation and stress-strain relationships under shear. As a result, both isotropic and $K_0$ conditions had similar shear strength envelopes in the same matric suction. Especially, strength parameters could obtain by stress variables based on critical state theory reasonably which was better than those by Mohr circles at failure.

  • PDF

Effect of pulsed laser heating on 3-D problem of thermoelastic medium with diffusion under Green-Lindsay theory

  • Othman, Mohamed I.A.;Atwa, Sarhan Y.
    • Steel and Composite Structures
    • /
    • v.36 no.3
    • /
    • pp.249-259
    • /
    • 2020
  • In this work, a novel three-dimensional model in the generalized thermoelasticity for a homogeneous an isotropic medium was investigated with diffusion, under the effect of thermal loading due to laser pulse in the context of Green-Lindsay theory was investigated. The normal mode analysis technique is used to solve the resulting non-dimensional equations of the problem. Numerical results for the displacement, the thermal stress, the strain, the temperature, the mass concentration, and the chemical potential distributions are represented graphically to display the effect of the thermal loading due to laser pulse and the relaxation time on the resulting quantities. Comparisons are made within the theory in the presence and absence of laser pulse.

Influence of yield functions and initial back stress on the earing prediction of drawn cups for planar anisotropic aluminum alloys (평면이방성 알루미늄 재료의 귀발생 예측에 있어서 항복함수와 초기 Back-Stress의 영향)

  • ;F. Barlat
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.58-61
    • /
    • 1998
  • Anisotropy is closely related to the formability of sheet metal and should be considered carefully for more realistic analysis of actual sheet metal forming operations. In order to better describe anisotropic plastic properties of aluminum alloy sheets, a planar anisotropic yield function which accounts for the anisotropy of uniaxial yield stresses and strain rate ratios simultaneously was proposed recently[1]. This yield function was used in the finite element simulations of cup drawing tests for an aluminum alloy 2008-T4. Isotropic hardening with a fixed initial back stress based on experimental tensile and compressive test results was assumed in the simulation. The computation results were in very good agreement with the experimental results. It was shown that the initial back stress as well as the yield surface shape have a large influence on the prediction of the cup height profile.

  • PDF

Three Demensional Behavior of Sand in Cubical Triaxial Tests and Its Prediction (입방체형삼축시험에 의한 모래의 3차원거동 및 예측)

  • 남정만;홍원표
    • Geotechnical Engineering
    • /
    • v.10 no.3
    • /
    • pp.111-118
    • /
    • 1994
  • A series of drained cubical triaxial tests was performed to investigate the finfluence of the intermediate principal stress on the deformation and strength characteristics of sand. Test results showed that the strength of sand as represented by the friction angle increased from triaxial compression condition (b:0) with increasing magnitude of the intermediate principal stress until the vus of b reached 0.75, land it decreased slightly with closing to b= 1. Also it was found that the projection of the plastic strain increment vector on the octahedral plane was perpendicular to the trace of the failure surface on that plane. The prediction by the isotropic single hardening model sllowed good coinidence with experimental results.

  • PDF