• Title/Summary/Keyword: Isotopic composition

Search Result 132, Processing Time 0.024 seconds

Recent Technological Advances in Optical Instruments and Future Applications for in Situ Stable Isotope Analysis of CH4 in the Surface Ocean and Marine Atmosphere (표층해수 내 용존 메탄 탄소동위원소 실시간 측정을 위한 광학기기의 개발 및 활용 전망)

  • PARK, MI-KYUNG;PARK, SUNYOUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.23 no.1
    • /
    • pp.32-48
    • /
    • 2018
  • The mechanisms of $CH_4$ uptake into and release from the ocean are not well understood due mainly to complexity of the biogeochemical cycle and to lack of regional-scale and/or process-scale observations in the marine boundary layers. Without complete understanding of oceanic mechanisms to control the carbon balance and cycles on a various spatial and temporal scales, however, it is difficult to predict future perturbation of oceanic carbon levels and its influence on the global and regional climates. High frequency, high precision continuous measurements for carbon isotopic compositions from dissolved $CH_4$ in the surface ocean and marine atmosphere can provide additional information about the flux pathways and production/consumption processes occurring in the boundary of two large reservoirs. This paper introduces recent advances on optical instruments for real time $CH_4$ isotope analysis to diagnose potential applications for in situ, continuous measurements of carbon isotopic composition of dissolved $CH_4$. Commercially available, three laser absorption spectrometers - quantum cascade laser spectroscopy (QCLAS), off-axis integrated cavity output spectrometer (OA-ICOS), and cavity ring-down spectrometer (CRDS) are discussed in comparison with the conventional isotope ratio mass spectrometry (IRMS). Details of functioning and performance of a CRDS isotope instrument for atmospheric ${\delta}^{13}C-CH_4$ are also given, showing its capability to detect localized methane emission sources.

Hydrogeological Characterization of Groundwater and Surface Water Interactions in Fresh-Saline Water Mixed Zone of the East Coast Lagoon Area, Korea (동해안 석호 담염수 혼합대에서 지하수와 지표수 상호작용의 수리지질학적 특성 평가)

  • Jeon, Woo-Hyun;Kim, Dong-Hun;Lee, Soo-Hyoung;Hwang, Seho;Moon, Hee Sun;Kim, Yongcheol
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.144-156
    • /
    • 2021
  • This study examined hydrogeological characteristics of groundwater and surface water interaction in the fresh-saline water mixed zone of East Coast lagoon area, Korea, using several technical approaches including hydrological, lithological, and isotopic methods. In addition, the fresh-saline water interface was evaluated using vertical electrical conductivity (EC) data. For this purpose, three monitoring wells (SJ-P1, SJ-P2, and SJ-P3) were installed across the Songji lagoon at depths of 7.4 to 9.0 m, and water level, EC, and temperature at the wells and in the lagoon (SJ-L1) were monitored using automatic transducers from August 1 to October 21, 2021. Isotopic composition of the groundwater, lagoon water, and sea water were also monitored in the mid-September, 2013. The mixing ratios calculated from oxygen and hydrogen isotopic composition decreased with increasing depth in the monitoring wells, indicating saline water intrusion. In the study area, the interaction of groundwater-surface water-sea water was evident, and residual salinity in the sedimentary layers created in the past marine environment showed disorderly characteristics. Moreover, the horizontal flow at the lagoon's edge was more dominant than the vertical flow.

Sr and Pb Isotopic Properties in Limnetic Gastropod (Semisulcospira libertina) Shell in the Jinan, Jeonbuk Area. (하천에 서식하는 민물고동(다슬기)의 Sr, Pb 동위원소 특성)

  • Jeon Seo-Ryeong;Chung Jae-il
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.129-134
    • /
    • 2005
  • The $^{87}Sr/^{86}Sr$ ratios between water and biogenic material are similar in marine and lacustrine environment. Pb isotope ratios we, however, reported not to have been corresponding between the biological tissues and ambient water in aquatic system, contrary to the Sr isotope ratios. In order to explore the potential application of two isotopes as environmental tracers, we report here the isotopic compositions of strontium and lead of gastropod shell in fresh water in Jinan area. The $^{87}Sr/^{86}Sr$ ratios of carbonate shells of gastropod living in fresh stream water, are similar as that of ambient water but are different by sites. The different $^{87}Sr/^{86}Sr$ ratios of stream water between the sites is likely caused by the difference of the isotopic composition of Sr derived form rocks in the basin. In contrast, there is a distinct difference of the lead isotopic values between the water and the gastropod shell, suggesting that shell-fish available lead in aquatic system is different from dissolved lead in water. It is assumed that the majority of Pb in stream water is derived from atmospheric Pb accumulated on soil materials over years rather than from rock.

Hydrochemical and Isotopic Properties of the Thermal Spring Water from Chonju Jukrim District, Korea (전주 죽림지역 온천수의 화학적 및 동위원소적 특성)

  • Na, Choon-Ki;Lee, Mu-Seong;Lee, In-Sung;Park, Hee-Youl;Kim, Oak-Bae
    • Economic and Environmental Geology
    • /
    • v.30 no.1
    • /
    • pp.25-33
    • /
    • 1997
  • The purpose of this study is to examine the feasibility of using stable isotopes as a hydrologic tracer, and to elucidate the groundwater circulation system and the source of S component dissolved in thermal water of the Chonju Jukrim thermal spring district based on the O, H and S isotopic variabilities of environmental materials including bedrock, rainwater, surface water, shallow subsurface water and thermal spring water. The ${\delta}^{18}O$ and ${\delta}D$ of subsurface waters and surface water show highly restricted range and plotted on the same meteoric water line as a ${\delta}D=8{\delta}^{18}O+19$ line, and derivate from the mean annual isotopic composition of the rain water but are analogous to those of rain waters precipitated during winter season, indicating that ground waters are originated from the meteoric water and are strongly affected by the seasonal variation of air mass. Thermal spring waters are more depleted in ${\delta}^{18}O$ and ${\delta}D$ than those of shallow ground water and surface water. It can be explained by the difference of recharge area. The hydrochemical properties of subsurface waters and surface water devide into two groups: $Ca(HCO_3)_2$ type including shallow subsurface water and surface water, and $Na(HCO_3)$ type of thermal spring waters. The ${\delta}^{34}S$ values of thermal spring water show very high positive and quitely distinct from those of shallow subsurface water and surface water that are similar to those of bed rocks, indicating that sulfate dissolved in thermal spring water has not only a terrigenic origin, but also originates partially from the foreign source containing very heavy ${\delta}^{34}S$ component such as an ancient sea water. However, the presence of $H_2S$ can not be ignore the affact of the isotopic fractionation to explaine the heavy ${\delta}^{34}S$ of thermal spring water. Overall, the Oxygen and Hydrogen stable isotopes can identify the source and the circulation system of the natural waters and the S-isotopes can provide a crucial clue on tracing the dissolved material transports in the circulation system of the natural water.

  • PDF

Petrochemistry of the Soyeonpyeong titaniferous iron ore deposits, South Korea (소연평도 함티타늄 자철광상의 암석지구화학적 연구)

  • Kim, Kyu Han;Lee, Jung Eun
    • Economic and Environmental Geology
    • /
    • v.27 no.4
    • /
    • pp.345-361
    • /
    • 1994
  • Lens shaped titanomagnetite ore bodies in the Soyeonpyeong iron mine are embedded in amphibolites, which were intruded into Precambrian metasediments such as garnet-mica schist, marble, mica schist, and quartz schist. Mineral chemistry, K-Ar dating and hydrogen and oxygen stable isotopic analysis for the amphibolites and titanomagnetite ores were conducted to interpret petrogenesis of amphibolite and ore genesis of titanomagnetite iron ore deposits. Amphibolites of igneous origin have unusually high content of $TiO_2$, ranging from 0.94 to 6.39 wt.% with an average value of 4.05 wt.%. REE patterns of the different lithology of the amphibolite show the similar trend with an enrichment of LREE. Amphiboles of amphibolites are consist mainly of calcic amphiboles such as ferro-hornblende, tschermakite, ferroan pargasite, and ferroan pargasitic hornblende. K-Ar ages of hornblende from amphibolite and gneissic amphibolite were determined as $440.04{\pm}6.39Ma$ and $351.03{\pm}5.21Ma$, respectively. This indicates two metamorphic events of Paleozoic age in the Korean peninsula which are correlated with Altin orogeny in China. The titanomagnetite mineralization seems to have occurred before Cambrian age based on occurrence of orebodies and ages of host amphibolites. The Soyeonpyeong iron ores are composed mainly of titanomagnetite, ilmenite, and secondary minerals such as ilmenite and hercynite exsolved in titanomagnetite. The temperature and the oxygen fugacity estimated by the titanomagnetite-ilmenite geothermometer are $500{\sim}600^{\circ}C$ (ave. $550^{\circ}C$) and about $2{\pm}10^{-23}bar$, respectively. Hornblendes from ores and amphibolites which responsible for magnetite ore mineralization, have a relatively homogeneous isotopic composition ranging from +0.8 to +3.9 ‰ in ${\delta}^{18}O$ and from -87.8 to -113.3 ‰ in ${\delta}D$. The calculated oxygen and hydrogen isotopic compositions of the fluids which were in equilibrium with hornblende at $550^{\circ}C$, range from 2.8 to 5.9‰ in ${\delta}^{18}O_{H2O}$ and from -60.41 to -81.31 ‰ in ${\delta}D_{H2O}$. The ${\delta}^{18}O_{H2O}$ value of magnetite ore fluids are in between +6.4 to + 7.9 ‰. All of these values fall in the range of primary magmatic water. A slight oxygen shift means that $^{18}O$-depleted meteoric water be acted with basic fluids during immiscible processes between silicate and titaniferous oxide melt. Mineral chemistry, isotopic compositions, and occurences of amphibolites and orebodies, suggest that the titanomagnetite melt be separated immisciblely from the titaniferous basic magma.

  • PDF

REE and Sr-Nd Isotopic Composition of the Shelf Sediments around Jeju Island, Korea (제주도 주변 대륙붕 퇴적물의 REE와 Sr-Nd 동위원소 조성)

  • Kim, Tae-Joung;Youn, Jeungsu
    • Journal of the Korean earth science society
    • /
    • v.33 no.6
    • /
    • pp.481-496
    • /
    • 2012
  • REE, major and trace elements, and Sr-Nd isotopic ratios of surface sediments around Jeju Island were analyzed for identifying the origin of the sediments. The Chemical Index of Alteration (CIA) between 44.2 to 68.9 (av. 59.4) shows a similarity with the Huanghe sediment. The most sediments found within the study areas show a very similar chondrite-normalized REE pattern that has enriched LREE ($La_{(N)}/Sm_{(N)}$ >3) and small negative Eu anomaly, typically of average shales. The UCC-nornalized REE patterns of the southwestern offshore sediment samples show a very similar pattem with the Changjiang sediment with enriched in most REE and more convex REE pattern than those of the Huanghe and Keum rivers sediments, which indicates that the Changjiang River's suspended sediments have been transported into the western part of Jeju Island. The $^{87}Sr/^{86}Sr$ isotopic ratios vs ${\varepsilon}_{Nd}(0)$ values were thus used as a tracer to discriminate the provenance of sediments in the study area. Based on the discriminated diagram, it clearly showed that most sediments in the western and northwestern part were closely plotted with sediments of the Huanghe River. However, the sediments in the southwestern part near the Changjianf estuary were closely plotted with submerged delta sediments of the Changjiang River. In contrast, the sediment samples of the northeastern part showed discriminative figures from those of the Chinese rivers. It suggests that sediments around Jeju Island must be originated from diverse sources.

Stable Isotopic Reconstructions of Diets in Joseon Dynasty Using Human Remains from Myeongam-ri Site, Asan (조선시대 회곽묘 출토 인골의 안정동위원소 분석을 통한 아산 명암리 피장자의 식생활 복원)

  • Kang, Soyeong;Kim, Yun-Ji;Cho, Eun Min;Kim, Sue Hoon
    • Korean Journal of Heritage: History & Science
    • /
    • v.49 no.4
    • /
    • pp.38-51
    • /
    • 2016
  • This study reports on human dietary reconstruction of Joseon Dynasty using stable isotope analysis. The stable carbon and nitrogen isotope values were measured of bone collagen extracted from 25 human bones from archaeological site in Myeongam-ri, Asan. Average values of ${\delta}^{13}C$ and ${\delta}^{15}N$ are $-19.7{\pm}0.5$‰(n=23) and $9.6{\pm}1.1$‰(n=23), respectively. The isotopic data indicates that Myeongam-ri individuals consumed $C_3$ plants mainly and assumed of dietary resourced from a terrestrial animal protein. Previous isotopic studies of the Joseon era suggested that dietary composition of Joseon population was not influenced by region and burial type. Also comparison of the isotopic results of male and female from double burials showed sex-dependent dietary patterns among individuals living in the same circumstances.

Geochemical and Isotopic Studies of the Cretaceous Igneous Rocks in the Yeongdong basin, Korea: Implications for the origin of magmatism in a pull-apart basin

  • H. Sagong;S.T. Kwon;C.S. Cheong;Park, S. H.
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2001.06a
    • /
    • pp.95-95
    • /
    • 2001
  • The Yeongdong basin is one of the pull-apart basins in the southwestern part of the Korean Peninsula that has developed during Cretaceous sinistal fault movement. The bimodal igneous activities (basalts and rhyolites) in the basin appear to be closely associated with the basin development. Here, we discuss the origin of the igneous rocks using chemical and radiogenic isotope data. Basaltic (48.4-52.7 wt% SiO$_2$) and rhyolitic (70.3-70.8 wt% SiO$_2$) rocks are slightly alkalic in a total alkali-silica diagram. The rhyolitic rocks with have unusually high K$_2$O contents (5.2-6.0 wt%). The basaltic rocks show an overall pattern of within-plate basalt in a MORB-normalized spider diagram, but have distinct negative anomaly of Nb, which indicates a significant amount of crustal component in the magma. The basaltic rocks plot within the calc-alkaline basalt field in the Hf/3-Th-Ta and Y/l5-La/10-Nb/8 discrimination diagrams. The eNd(T) values of the basaltic rocks (-13.6 to 14.3) are slightly higher than those of the rhyolitic rocks (-14.1 to 15.2), and the initial Sr isotopic ratios of the former (0.7085-0.7093) are much lower than those of the latter (0.7140-0.7149). However, the initial Nd and Sr isotope ratios of the igneous rocks in the Yeongdong basin are similar to those of the nearby Cretaceous igneous rocks in the Okcheon belt. The Pb isotope ratios plot within the field of Mesozoic granitoids outside of the Gyeongsang basin in Pb-Pb correlation diagrams. Since a basaltic magma requires the mantle source, the enriched isotopic signatures and negative Nb anomaly of the basaltic rocks suggest two possibilities for their origin: enriched mantle lithospheric source, or depleted mantle source with significant amount of crustal contamination. However, we prefer the first possibility since it would be difficult for a basaltic magma to maintain its bulk composition when it is significantly contaminated with granitic crustal material. The slightly more enriched isotopic signatures of rhyolitic rocks also suggest two possibilities: differentiate of the basaltlc magma with some crustal contamination, or direct partial melting of the lower crust. Much larger exposed volume of the rhyolitic rocks, compared with the basaltic rocks, indicates the latter possibility more favorable.

  • PDF

Groundwater-Stream Water Interaction Induced by Water Curtain Cultivation Activity in Sangdae-ri Area of Cheongju, Korea (청주 상대리지역에서 수막재배가 지하수-하천수 상호작용에 미치는 영향)

  • Moon, Sang-Ho;Kim, Yongcheol;Jeong, Youn-Young;Hwang, Jeong
    • Economic and Environmental Geology
    • /
    • v.49 no.2
    • /
    • pp.105-120
    • /
    • 2016
  • Most of riverside in Korea, in case of application of water curtain cultivation (WCC) technique, has been inveterately suffering from the gradual drawdown of groundwater level and related shortage of water resources during the WCC peak time. We believe that the water resources issue in these riverside areas can be effectively solved when the interaction between groundwater and nearby surface water is well understood. To investigate the connection between stream and ground water, and the influence of stream water on the nearby aquifer, this study examined the water temperature and oxygen and hydrogen stable isotopic compositions. The study area is well-known strawberry field applying the WCC technique in Sangdae-ri, Gadeok-myon, Cheongju City, and the sampling was done from February 2012 through June 2014 for stream and ground water. Some groundwater wells near stream showed big temporal variations in water temperature, and their oxygen and hydrogen stable isotopes showed similar compositions to those of adjacent stream water. This indicates that the influence of stream water is highly reflected in the stable isotopic composition of groundwater. Four cross-sectional lines from stream to hillside were established in the study area to determine the spatial differences in water quality of wells. At the late stage of WCC in February to March, groundwater of wells in line with short cross-sectional length showed the narrow range of isotopic compositions; however, those in the long cross-sectional line showed a wide compositional range. It was shown that the influence of the stream water at the late WCC stage have reached to the distance of 160 to 165 m from stream line, which is equivalent to the whole length and one-third point in each short and long cross-sectional line, respectively. Therefore, the wide compositional range in the long cross-sectional lines was not only due to the influence of stream water, but apparently resulted from the change of relative impact of each groundwater supplying from two or more aquifers. In view of stable isotopic compositions, there seems to be three different aquifers in this study area, which is competing for dominance of water quality in wells at each period of WCC.

Geochemical Water Quality and Contamination of Shallow and Deep Groundwaters in Myunggok-ri, Kongju (공주시 유구읍 명곡리지역 천부 및 심부지하수의 지화학적 수질특성과 오염)

  • Jeong, Chan-Ho;Hwang, Jeong;Park, Chung-Hwa
    • Economic and Environmental Geology
    • /
    • v.31 no.6
    • /
    • pp.485-498
    • /
    • 1998
  • The water-rock interaction and anthropogenic contamination affecting to geochemical composition of shallow and deep groundwaters were investigated in the agricultural area of Myunggok-ri, Kongju. The shallow groundwater is classified into the chemical types of $Ca-HCO_3$ and $Ca-Cl(SO_4)$ and shows weak acid having an average pH 6.2. Deep groundwater shows the uncontaminated composition of the chemical types of $Na-HCO_3$ and Na $(Ca)-HCO_3$ with pH of 8.4~8.8. The grouping approach of chemical data of waters shows the distinguished trend between water composition influenced anthrophogenic input and water composition mainly determined by natural process such as water-rock interaction. The main anthropogenic inputs affecting chemical composition of shallow groundwater are the contaminants such as $K^+$, $NO_3{^-}$, $Cl^-$ having average values of 4.4 mg/l, 22 mg/l, 13.7 mg/l, respectively. The contaminants were probably derived from fertilizer, sweage, septic tank, and stable, etc. The hydrogen and oxygen isotopic compositions indicate that five deep groundwaters were recharged from different altitudes, and that shallow and deep groundwaters were originated from meteoric water. Tritium contents of waters suggest that deep groundwater was recharged before or just after 1950s, and that shallow groundwater is much younger than deep groundwater. The results of this study may serve as a basic data for the future study of shallow groundwater as a drinking water in agricultural area, in Korea.

  • PDF