DOI QR코드

DOI QR Code

REE and Sr-Nd Isotopic Composition of the Shelf Sediments around Jeju Island, Korea

제주도 주변 대륙붕 퇴적물의 REE와 Sr-Nd 동위원소 조성

  • Kim, Tae-Joung (Department of Earth and Marine Sciences, Jeju National University) ;
  • Youn, Jeungsu (Department of Earth and Marine Sciences, Jeju National University)
  • 김태정 (제주대학교 지구해양과학과) ;
  • 윤정수 (제주대학교 지구해양과학과)
  • Received : 2012.08.13
  • Accepted : 2012.09.19
  • Published : 2012.10.31

Abstract

REE, major and trace elements, and Sr-Nd isotopic ratios of surface sediments around Jeju Island were analyzed for identifying the origin of the sediments. The Chemical Index of Alteration (CIA) between 44.2 to 68.9 (av. 59.4) shows a similarity with the Huanghe sediment. The most sediments found within the study areas show a very similar chondrite-normalized REE pattern that has enriched LREE ($La_{(N)}/Sm_{(N)}$ >3) and small negative Eu anomaly, typically of average shales. The UCC-nornalized REE patterns of the southwestern offshore sediment samples show a very similar pattem with the Changjiang sediment with enriched in most REE and more convex REE pattern than those of the Huanghe and Keum rivers sediments, which indicates that the Changjiang River's suspended sediments have been transported into the western part of Jeju Island. The $^{87}Sr/^{86}Sr$ isotopic ratios vs ${\varepsilon}_{Nd}(0)$ values were thus used as a tracer to discriminate the provenance of sediments in the study area. Based on the discriminated diagram, it clearly showed that most sediments in the western and northwestern part were closely plotted with sediments of the Huanghe River. However, the sediments in the southwestern part near the Changjianf estuary were closely plotted with submerged delta sediments of the Changjiang River. In contrast, the sediment samples of the northeastern part showed discriminative figures from those of the Chinese rivers. It suggests that sediments around Jeju Island must be originated from diverse sources.

제주도 주변 대륙붕해역에 분포하는 퇴적물의 기원지를 해석하기 위해 표층퇴적물의 희토류원소(REE), 주성분 및 미량원소, Sr-Nd 동위원소비를 분석하였다. 퇴적물의 화학원소에 근거한 변질지수(CIA)는 44.2-68.9(av.59.4)의 범위를 보이며 황하강퇴적물과 유사하였다. 연구지역 퇴적물을 콘드라이트로 표준화한 REE 패턴에서 대부분 LREE가 부화된($La_{(N)}/Sm_{(N)}$ >3) 작은 Eu 부(-) 이상을 가지는 전형적인 셰일의 희토류원소의 패턴을 나타낸다. UCC로 표준화한 REE 패턴에서 연구지역 남서쪽 외해지역의 퇴적물 시료들은 황하나 금강기원 퇴적물보다 양자강퇴적물과 유사한 높은 희토류원소함량과 위로 볼록한 REE 패턴을 보여 양자강기원 부유물질이 제주도 서쪽해역까지 운반되고 있음을 의미한다. $^{87}Sr/^{86}Sr$ 동위원소비와 ${\varepsilon}_{Nd}(0)$의 구분지수는 연구지역 퇴적물의 기원지를 밝히는데 지시자로 제시할 수 있었다. 연구지역의 서쪽과 북서쪽에 분포하는 대부분의 퇴적물은 황하강 퇴적물 주위에 밀집 분포하는 특징을 보이고, 양자강 하구역과 가까운 남서쪽지역의 퇴적물들은 양자강 수중삼각주 퇴적물과 유사성을 보였다. 반면 제주도 북동쪽지역의 퇴적물은 중국의 강기원 퇴적물과는 다른 지역에 위치하는 특징을 보여, 따라서 제주도 주변해역은 복합기원 퇴적물이 집적되고 있음을 의미한다.

Keywords

References

  1. 남승일, 김성필, 장정해, Mackensen, A., 2003, 마지막 해빙기 해침 이후 동중국해 북부해역과 황해의 고환경 변화. 지질학회지, 39, 149-160.
  2. 박용안, 최진용, 이창복, 김대철, 최광원, 1994, 한국서해 중부해역 대륙붕 퇴적물의 분포와 퇴적작용. 한국해양학회지, 29, 357-365.
  3. 이용일, 이선복, 2002, 용인시 평창리 구석기유적발굴지 고토양 특성과 이의 고고지질학적 적용. 지질학회지, 38, 471-489.
  4. 임동일, 신인현, 정회수, 2007, 한국과 중국의 강 퇴적물의 주성분원소 함량특성: 황해니질퇴적물의 기원지 연구를 위한 잠재적 추적자. 한국지구과학회지, 28, 311-323.
  5. 윤정수, 김태정, 2008, 제주도 서부해역 표층퇴적물의 지화학적 조성과 기원 연구. 한국지구과학회지, 29, 328- 340.
  6. 윤정수, 변종철, 김여상, 2006, 동중국해 외대륙붕해역 니질 퇴적물의 지화학적 특성. 한국지구과학회지, 27, 198- 208.
  7. 윤정수, 임동일, 변종철, 정회수, 2005, $^{87}Sr/^{86}Sr$ 비를 이용한 동중국해역 대륙붕 퇴적물의 기원연구. 한국해양학회지, 10, 92-99.
  8. Alexander, C.R., DeMaster, D.J., and Nittrouer, C.A., 1991, Sediment accumulation in a modern epicontinental-shelf setting: The Yellow Sea. Marine Geology, 98, 51-72. https://doi.org/10.1016/0025-3227(91)90035-3
  9. Asahara, Y., Tanaka, T., Kamioka, H., and Nishimura, A., 1995, Asian continental nature of $^{87}Sr/^{86}Sr$ ratios in north central Pacific sediments. Earth and Planetary Science Letter, 133, 105-116. https://doi.org/10.1016/0012-821X(95)00048-H
  10. Birkeland, P.W., 1984, Soils and geomorphology. Oxford University Press, Oxford, UK, 372 p.
  11. Borg, L.E. and Banner, J.L., 1996, Neodymium and strontium isotopic constraints on soil sources in Barbados, West Indies. Geochemica et Cosmochimica Acta, 60, 4193-4206. https://doi.org/10.1016/S0016-7037(96)00252-9
  12. Burke, W.H., Denison, R.E., Hetherington, E.A., Koepnick, R.B., Nelson, H.F., and Otto, J.B., 1982, Variation of seawater $^{87}Sr/^{86}Sr$ throughout Phanerozoic time. Geology, 10, 516-519. https://doi.org/10.1130/0091-7613(1982)10<516:VOSSTP>2.0.CO;2
  13. Capo, R.C. and Depaolo, D.J., 1990, Seawater strontium isotopic variation from 2.5 million years ago to the present. Science, 249, 51-55. https://doi.org/10.1126/science.249.4964.51
  14. Capo, R.C., Stewart, B.W., and Chadwick, O.A., 1998, Strontium isotopes as tracers of ecosystem processes: Theory and methods. Geo-derma, 82, 197-225.
  15. Chough, S.K. and Kim, D.C., 1981, Disperal of finegrained sediments in the southeastern Yellow Sea: A steady-state model. Journal of Sedimentary Petrology, 51, 721-758.
  16. Cullers, R.L., Chaudhuri, C., Kilbane, N., and Koch, R., 1979, REE in size fractions and sedimentary rocks of Pennsylvanian-Permian age from the mid-continent of the USA. Geochemica et Cosmochimica Acta, 43, 1285-1301 https://doi.org/10.1016/0016-7037(79)90119-4
  17. Cullers, R.L., Barrett, T., Carlson, R., and Robinson, B., 1987, REE mineralogic changes in Holocene soil and stream sediment. Chemical Geology, 63, 275-297. https://doi.org/10.1016/0009-2541(87)90167-7
  18. Cullers, R.L., Basu, A., and Suttner, L.J., 1988, Geochemical signature of provenance in sand-material in soils and stream sediments near the Tobacco Root Batholith, Montana, USA. Chemical Geology, 70, 335- 348. https://doi.org/10.1016/0009-2541(88)90123-4
  19. Dasch, E.J., 1969, Sr isotope in weathering profiles, deepsea sediments and sedimentary rocks. Geochemica et Cosmochimica Acta, 33, 1521-1552. https://doi.org/10.1016/0016-7037(69)90153-7
  20. DeMaster, D.J., Mckee, B.A., Nittourer, C.A., Qian, J., and Cheng, G., 1985, Rates of sediment accumulation and particle reworking based on radiochemical measurement from continental shelf deposit in the East China Sea. Continental Shelf Research, 4, 143-158. https://doi.org/10.1016/0278-4343(85)90026-3
  21. Derry, L. and France-Lanord, C., 1996, Neogene Himalayan weathering history and river $^{87}Sr/^{86}Sr$: Impact on the marine Sr record. Earth and Planetary Science Letter, 142, 59-74. https://doi.org/10.1016/0012-821X(96)00091-X
  22. Douglas, G.B., Gray, C.M., Hart, B.T., and Beckett, R., 1995, A strontium isotopic investigation of the origin of Suspended Particulate Matter (SPM) in the Murray- Darling River system, Australia. Geochemica et Cosmochimica Acta, 59, 3799-3815. https://doi.org/10.1016/0016-7037(95)00266-3
  23. Eisenhaner, A., Meyer, H., Rachold, V., Tutken, T., Wiegand, B., Hansen, B.T., Spielhagen, R.F., Lindemann, F., and Kas-sens, H., 1999, Grain-size separation and sediment mixing in Arctic Ocean sediments: Evidence from strontium isotope systematic. Chemical Geoloy, 158, 173-188 https://doi.org/10.1016/S0009-2541(99)00026-1
  24. Folk, R.L. and Ward, W.C., 1957, Brazor river bar: A study in the significance of grain size parameters. Journal of Sedimentary Petrology, 27, 3-27. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
  25. Galehouse, J.S., 1971, Sedimentation analysis. In Carver, R.E. (eds.), Procedures in sedimentary petrology. Wiley- Interscience, NY, USA, 69-94.
  26. Goldstein, S.J. and Jacobsen, S.B., 1988, Nd and Sr isotopic systematics of river water suspended material: Implications for crustal evolution. Earth and Planetary Science Letter, 87, 249-265. https://doi.org/10.1016/0012-821X(88)90013-1
  27. Gromet, L.P., Dymek, R.F., Haskin, L.A., and Korotev, R.L., 1984, The North American shale composite: It's compilation major and trace element characteristics. Geochemica et Cosmochimica Acta, 48, 2468-2482.
  28. Harnois, L., 1988, The CIW index: A new chemical index of weathering. Sedimentary Geology, 55, 319-322. https://doi.org/10.1016/0037-0738(88)90137-6
  29. Hu, D. and Yang, Z., 2001, Key processes in the ocean flux of the East China Sea. China Ocean Press, Beijing, China, 513-516.
  30. Ingram, R.L., 1971, Sieve analysis. In Carrer, R.E. (eds.), Procedure in sedimentary petrology. Wiley Interscience, NY, USA, 49-68.
  31. Jacobsen, S.B. and Wasserburg, G.J., 1980, Sm-Nd isotopic evolution of chondrites. Earth and Planetary Science Letter, 50, 139-155. https://doi.org/10.1016/0012-821X(80)90125-9
  32. Kitano, Y. and Hujiyoshi, R., 1980, Selective chemical leaching of cadmium, coppr, and manganese and iron in marine sediments. Geochemical Journal, 14, 113-122. https://doi.org/10.2343/geochemj.14.113
  33. Koepnick, R.B., Burke, W.H., Denison, R.E., Hetherington, E.A., Nelson, H.F., Otto, J.B., and Waite, L.E., 1985, Construction of the seawater $^{87}Sr/^{86}Sr$ curve for the cenozoic and cretaceous: Supporting data. Chemical Geology, 58, 55-81. https://doi.org/10.1016/0168-9622(85)90027-2
  34. Lee, H.J. and Chough, S.K., 1989, Sediment distribution, dispersal and budget in the Yellow Sea. Marine Geology, 87, 195-205. https://doi.org/10.1016/0025-3227(89)90061-3
  35. Lee, S.G., Masuda, A., and Kim, H.S., 1994, An early proterozoic Ieuco-granitic gneiss with the REE tetrad phenomenon. Chemical Geology, 114, 59-67. https://doi.org/10.1016/0009-2541(94)90041-8
  36. Li, B., Park, B.K., and Kim, D., 1999, Paleoceanographic records from the Northern shelf of the East China Sea since the Last Cla-cial Maximum. Journal of the Korean Society of Oceanography, 34, 151-166.
  37. Li, C., Kang, S., Zhang, Q., and Wang, F., 2009, Rare earth elements in the surface sediments of the Yarlung Tsangbo (upper Brahmaputra River) sediments, Southern Tibetan Platean. Quaternary International, 208, 151-159. https://doi.org/10.1016/j.quaint.2009.05.003
  38. Lie, H.J., 1986, Summertime hydrographic features in the southeastern Huanghe. Progess of Oceanology, 28, 680- 683.
  39. Liu, Z.X., Beme, S., Saito, Y., Lericolasis, G., and Marsset, T., 2000, Quaternary seismic stratigraphy and paleoenvironments on the continental shelf of the East China Sea. Journal of Asian Earth Science, 18, 441-452. https://doi.org/10.1016/S1367-9120(99)00077-2
  40. Martin, C.E. and McCulloch, M.T., 1999, Nd-Sr isotopic and trace element geo-chemistry of river sediments and soils in a fertilized catchment, New South Wales, Australia. Geochemica et Cosmochimica Acta, 63, 287- 305. https://doi.org/10.1016/S0016-7037(98)00308-1
  41. McLennan, S.M., 1989, Rare earth elements in sedimentray rocks: Influence of provenance and sedimentary processes. Review Mineralogy, 21, 170-199.
  42. Milliman, J.D., Beardslay, R.C., Yang, Z.S., and Limebruner, R., 1985, Modern Huanghe deived mud on the outer shelf of the East China Sea: Identification and potential transport mechanisms. Contiental Shelf Researcch, 4, 175-188. https://doi.org/10.1016/0278-4343(85)90028-7
  43. Nesbitt, H.W. and Young, G.M., 1982, Early proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715-717. https://doi.org/10.1038/299715a0
  44. Nesbitt, H.W. and Young, G.M., 1984, Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimca et Cosmochimca Acta, 48, 1523-1534. https://doi.org/10.1016/0016-7037(84)90408-3
  45. Niino, H. and Emery, K.O., 1961, Sediments of shallow portion of East China Sea and South China Sea. Geological Society of America Bulletin, 72, 731-762. https://doi.org/10.1130/0016-7606(1961)72[731:SOSPOE]2.0.CO;2
  46. Palmer, M.R. and Edmond, J.M., 1989, The strontium isotope budget of the modern ocean. Earth and Planetary Science Letter, 92, 11-26. https://doi.org/10.1016/0012-821X(89)90017-4
  47. Palmer, M.R. and Edmond, J.M., 1992, Controls over the sttontium isotope composition of river water. Geochemica et Cosmochimica Acta, 56, 415-418.
  48. Park, J.B. and Kwon, S.T., 1993, Geochemical evolution of the Cheju Volcanic Island: II. Trace element chemistry of volcanic rocks from the northern part of Cheju Island. Journal of the Geological Society of Korea, 29, 477-492.
  49. Piper, D.Z., 1985, Rare earth elements in the sedimentary cycle: A summery. Chemical Geology, 14, 285-304.
  50. Saito, Y., 1998, Sedimentary environment and budget in the East China Sae. Bulletin on Coastal Oceanography Japan, 36, 43-58.
  51. Schubel, J.R., Shen, H.T., and Park, M.J., 1984, A comparison of some characteristic sedimentation process of estuaries entering the Yellow Sea. Preceedings of Korea-U.S. Seminar and Workshop, Marine Geology and Physical Processes of the Yellow Sea, 286-308.
  52. Shaffer, N.R. and Faure, G., 1976, Regional variation $^{87}Sr/^{86}Sr$ ratios and mineral composition in sediment in the Red Sea. Geological Society of America Bulletin, 87, 1491-1500. https://doi.org/10.1130/0016-7606(1976)87<1491:RVOSRA>2.0.CO;2
  53. Sholkovitz, E.R. and Szymeazk, R., 2000, The estuarine chemistry of rare earth elements: Comparison of the Amazon, Fly, Sepik and the Golf of Papua system. Earth and Planetary Science Letter, 179, 299-309. https://doi.org/10.1016/S0012-821X(00)00112-6
  54. Snoeckx, H., Grousset, F., Rerel, M., and Boelaert, A., 1999, European contribution of ice-rafted sand to Heinrich layers H3 and H4. Marine Geology, 158, 197-208. https://doi.org/10.1016/S0025-3227(98)00168-6
  55. Taylor, S.R. and McLennan, S.K., 1985, The continental crust: Its composition and evolution. Blcakwell, Oxford, USA, 312 p.
  56. Tutken, T., Eisenhauer, A., Wiegand, B., and Hansen. B.T., 2002, Glacial-interglacial cycles in Sr and Nd isotope composition of Arctic marine sediments triggered by the Svalbard/Barents Sea ice sheet. Marine Geology, 351- 372.
  57. Weldeab, S., Emeis, K.C., Hemleben, C., and Siebel, W., 2002, Provenance of lithogenic surface sediments and pathways of riverine suspened matter in the Eastern Mediterranean Sea: Evidence from $^{143}Nd/^{144}Nd$ and $^{87}Sr/^{86}Sr$ ratios. Chemical Geology, 186, 139-149. https://doi.org/10.1016/S0009-2541(01)00415-6
  58. Yang, S.Y., Li, C.X., Jung, H.S., and Lee, H.J., 2002, Discrimination of elemental compositions between the Changjiang and Huanghe sediments and identification of sediment source in northern Jiangsu coast plain, China. Marine Geology, 186, 229-241 https://doi.org/10.1016/S0025-3227(02)00335-3
  59. Yang, S.Y., Jung, H.S., and Lim, D.I., 2003, A review on provenance discrimination of the Yellow Sea sediments. Earth-Science Reviews, 63, 93-120.
  60. Yang, S.Y., Lim, D.I., Jung, H.S., and Oh, B.C., 2004, Geochemical composition and provenance discrimination of coastal sediments around Cheju Island in the southeastern Yellow Sea. Marine Geology, 206, 41-53. https://doi.org/10.1016/j.margeo.2004.01.005
  61. Yang, S. and Youn, J.S., 2007, Geochemical compositions and provenance discrimination of the central south Yellow Sea sediments. Marine Geology, 243, 229-241. https://doi.org/10.1016/j.margeo.2007.05.001
  62. Youn, J.S. and Kim, T.J., 2011, Geochemical composition and provenance of muddy shelf deposits in the East China Sea. Quaternary International, 230, 3-12. https://doi.org/10.1016/j.quaint.2009.11.001
  63. Zhao, Y.Y., Qing, Z.Y., and Li, F., 1990, On the source and genesis of the mud in the central area of the South Yellow Sea. Chinese Journal of Oceanology and Limnol-nolohy, 8, 66-73. https://doi.org/10.1007/BF02846453
  64. Zhao, Y.Y. and Yan, M.C., 1992, Abundance of chemical elements in sediments from the Huanghe River, the Changjiang River and the continental shelf of China. Chinese Science Bulletin, 37, 1991-1994.
  65. Zhu, E. and Wang, Q., 1988, Sedimentation on the north shelf of the East China Sea. Marine Geology, 81, 123- 136. https://doi.org/10.1016/0025-3227(88)90021-7

Cited by

  1. Using geochemistry of rare earth elements to indicate sediment provenance of sand ridges in southwestern Yellow Sea vol.27, pp.1, 2017, https://doi.org/10.1007/s11769-017-0847-0