DOI QR코드

DOI QR Code

Recent Technological Advances in Optical Instruments and Future Applications for in Situ Stable Isotope Analysis of CH4 in the Surface Ocean and Marine Atmosphere

표층해수 내 용존 메탄 탄소동위원소 실시간 측정을 위한 광학기기의 개발 및 활용 전망

  • PARK, MI-KYUNG (Kyungpook Institute of Oceanography, College of Natural Sciences, Kyungpook National University) ;
  • PARK, SUNYOUNG (Department of Oceanography, College of Natural Sciences, Kyungpook National University)
  • 박미경 (경북대학교 경북해양과학연구소) ;
  • 박선영 (경북대학교 지구시스템과학부)
  • Received : 2018.02.06
  • Accepted : 2018.02.19
  • Published : 2018.02.28

Abstract

The mechanisms of $CH_4$ uptake into and release from the ocean are not well understood due mainly to complexity of the biogeochemical cycle and to lack of regional-scale and/or process-scale observations in the marine boundary layers. Without complete understanding of oceanic mechanisms to control the carbon balance and cycles on a various spatial and temporal scales, however, it is difficult to predict future perturbation of oceanic carbon levels and its influence on the global and regional climates. High frequency, high precision continuous measurements for carbon isotopic compositions from dissolved $CH_4$ in the surface ocean and marine atmosphere can provide additional information about the flux pathways and production/consumption processes occurring in the boundary of two large reservoirs. This paper introduces recent advances on optical instruments for real time $CH_4$ isotope analysis to diagnose potential applications for in situ, continuous measurements of carbon isotopic composition of dissolved $CH_4$. Commercially available, three laser absorption spectrometers - quantum cascade laser spectroscopy (QCLAS), off-axis integrated cavity output spectrometer (OA-ICOS), and cavity ring-down spectrometer (CRDS) are discussed in comparison with the conventional isotope ratio mass spectrometry (IRMS). Details of functioning and performance of a CRDS isotope instrument for atmospheric ${\delta}^{13}C-CH_4$ are also given, showing its capability to detect localized methane emission sources.

대기 중 메탄의 해양 흡수와 방출 메커니즘은 생지화학 순환이 갖는 복잡성과 해양-대기 경계면에서 지역 규모 혹은 기작 단위에서의 관측 연구 부족으로 잘 알려져 있지 못하다. 그러나 다양한 시 공간적 규모에서 탄소 수지와 순환을 조절하는 해양 메커니즘에 대한 완전한 이해 없이는, 해양의 탄소 변동과 전 지구적 지역적 기후 변화에 미치는 영향을 예측하기란 불가능하다. 표층해양 및 해양대기에서 용존 메탄의 탄소동위원소 조성에 대한 정밀한 연속 관측은 해양-대기 경계면에서의 유 출입 및 생산 소모 과정에 대한 추가적인 정보를 제공한다. 본 연구는 최근 급격히 발전한 광학기반 동위원소 분석 기기들을 개괄적으로 소개하고, 표층 양 내 용존 메탄과 해양대기 메탄의 탄소동위원소 실시간 연속 측정으로의 적용을 위해, 현재 이들 기기들의 기술 및 활용 현황을 논의한다. 이어 레이저 광원의 흡수분광기 중 하나로, 사용이 최근 급증하고 있는 광공동 링다운분광기(CRDS, Cavity Ring Down Spectroscopy)기반 동위원소 분석기기를 예시로 하여 연속 관측 시스템의 운용, 최적화 조건, 보정법을 제안하며, 기체 시료로부터 실시간 관측된 메탄 농도 및 메탄 탄소동위원소의 관측 예를 소개하고자 한다. 이러한 가능성 검토를 통해 향후 해양 환경에서의 실시간 메탄 탄소동위원소 분석 연구의 방향을 제안하고자 한다.

Keywords

References

  1. Allan, D.W., 1966. Statistics of atomic frequency standards. P. IEEE, 54: 221-230.
  2. Bange, H.W., S. Rapsomanikis and M.O. Andreae, 1996. The Aegean Sea as a source of atmospheric nitrous oxide and methane. Mar. Chem., 53: 41-49. https://doi.org/10.1016/0304-4203(96)00011-4
  3. Becker, M., N. Anderson, B. Fielder, P. Fietzek, A. Kortzinger, T. Steinhoff and G. Friedrichs, 2012. Using cavity ringdown spectroscopy for continuous monitoring of delta C-13($CO_2$) and $fCO_2$ in the surface ocean. Limnol. Oceanogr., 10: 752-766, doi:10.4319/lom.2012.10.752.
  4. Bergamaschi, P., C.A.M. Brenninkmeijer, M. Hahn, T. Rockmann, D.H. Scharffe, P.J. Crutzen, N.F. Elansky, I.B.Belikov, N.B.A. Trivett and D.E.J. Worthy, 1998. Isotope analysis based source identification for atmospheric $CH_4$ and CO sampled across Russia using the Trans-Siberian railroad. J. Geophys. Res., 103: 8227-8235. https://doi.org/10.1029/97JD03738
  5. Bowling, D.R., D.E. Pataki and J.R. Ehleringer, 2003. Critical evaluation of micrometeorological methods for measuring ecosystem-atmosphere isotopic exchange of $CO_2$. Agric. For. Meteorol., 116: 159-179. https://doi.org/10.1016/S0168-1923(03)00006-6
  6. Brass, M. and T. Rockmann, 2010. Continuous-flow isotope ratio mass spectrometry method for carbon and hydrogen isotope measurements on atmospheric methane. Atmos. Meas. Tech., 3: 1707-1721.
  7. Ciais, P., P.P. Tans, J.W.C. White, M. Trolier, R.J. Francey, J.A. Berry, D.R. Randall, P.J. Sellers, G.J. Collatz and D.S. Schimel, 1995. Partitioning of ocean and land uptake of $CO_2$ as inferred by $^{13}C$ measurements from the NOAA Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network. J. Geophys. Res., 100: 5051-5070, doi:10.1029/- 94JD02847.
  8. Crosson, E.R., K.N. Ricci, B.A. Richman, F.C. Chilese, T.G. Owano, R.A. Provencal, M.W. Todd, J. Glasser, A.A. Kachanov, B.A. Paldus, T.G. Spence and R.N. Zare, 2002. Stable isotope ratios using cavity ring-down spectroscopy: Determination of $^{13}C/^{12} C$ for carbon dioxide in human breath. Anal. Chem., 74: 2003-2007. https://doi.org/10.1021/ac025511d
  9. de Angelis, M.A. and C. Lee, 1994. Methane production during zooplankton grazing on marine phytoplankton. Limnol. Oceanogr., 39: 1298-1308, doi:10.4319/lo.1994.39.6.1298.
  10. Eyer, S., B. Tuzson, M.E. Popa, C. van der Veen, T. Rockmann, M. Rothe, W.A. Brand, R. Fisher, D. Lowry, E.G. Nisbet, M.S. Brennwald, E. Harris, C. Zellweger, L. Emmenegger, H. Fischer and J. Mohn, 2016. Real time analysis of ${\delta}^{13}C$ and ${\delta}D-CH_4$ in ambient air with laser spectroscopy: method development and first intercomparison results. Atmos. Meas. Tech., 9: 263-280. https://doi.org/10.5194/amt-9-263-2016
  11. Friedrichs, G., G. Bock, F. Temps, P. Fiezek, A. Kortzinger and D.W.R. Wallace, 2010. Toward continuous monitoring of seawater $(CO_2)-C-13/(CO_2)-C-12$ isotope ratio and p$CO_2$: Performance of cavity ringdown spectroscopy and gas matrix effects. Limnol. Oceanogr., 8: 539-551. https://doi.org/10.4319/lom.2010.8.539
  12. Griffis, T.J., S.D. Sargent, J.M. Baker, X. Lee, B.D. Tanner, J. Greene, E. Swiatek and K. Billmark, 2008. Direct measurement of biosphere-atmosphere isotopic $CO_2$exchange using the eddy covariance technique. J. Geophys. Res., 113: D08304, doi:10.1029/2007JD009297.
  13. IPCC, 2007: Changes in atmospheric constituents and in radiative forcing, in Climate Change 2007. The physical Basis. Contribution of working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon. Cambridge Univ. Press, Cambridge, U.K., pp. 129-234.
  14. Johnson, J.E., 1999. Evaluation of a seawater equilibrator for shipboard analysis of dissolved oceanic trace gases. Anal. Chim. Acta, 395: 119-132, doi:10.1016/S0003-2670(99)00361-X.
  15. Kai, F.M., S.C. Tyler, J.T. Randerson and D.R. Blake, 2011. Reduced methane growth rate explained by decreased Northern Hemisphere microbial sources. Nature, 476: 194-197, doi:10.1038/nature10259.
  16. Karl, D.M. and B.D. Tibrook, 1994. Production and transport of methane in oceanic particulate organic matter. Nature, 368: 732-734. https://doi.org/10.1038/368732a0
  17. Karl, D.M., L. Beversdorf, K.M. Bjorkman, M.J. Church, A. Martinez and E.F. Delong, 2008. Aerobic production of methane in the sea. Nature Geosci., 1: 473-478. https://doi.org/10.1038/ngeo234
  18. Koortzinger, A., L. Mintrop, D.W.R. Wallace, K.M. Johnson, C. Neil, B. Tilbrook, P. Towler, H.Y. Inoue, M. Ishii, G. Shaffer, R.F. Torres Saavedra, E. Ohtaki, E. Yamashita, A. Poisson, C. Brunet, B. Schauer, C. Goyet and G. Eischeid, 2000. The internationalat-sea intercomparison of $fCO_2$ systems during the R/V Meteor Cruise 36/1 in the North Atlantic Ocean. Mar. Chem., 72: 171-192. https://doi.org/10.1016/S0304-4203(00)00080-3
  19. Kort, E.A., S.C. Wofsy, B.C. Daube, M. Diao, J.W. Elkins, R.S. Gao, E.J. Hintsa, D.F. Hurst, R. Jimenez, F.L. Moore, J.R. Spackman and M.A. Zondio, 2011. Atmospheric observations of Arctic Ocean methane emissions up to 82 degrees north. Nature Geoscience, 5: 318-321, doi:10.1038/NGEO1452.
  20. Kosterev, A.A., R.F. Curl, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson and A.Y. Cho, 1999. Methane concentration and isotopic composition measurements with a mid-infrared quantum-cascade laser. Opt. Lett., 24: 1762-1764, doi:10.1364/OL.24.001762.
  21. McManus, J.B., D.D. Nelson, J.H. Shorter, R. Jimenez, S. Herndon, S. Saleska and M. Zahniser, 2005. A high precision pulsed quantum cascade laser spectrometer for measurements of stable isotopes of carbon dioxide. J. Mod. Opt., 52: 2309-2321. https://doi.org/10.1080/09500340500303710
  22. McManus, J.B., M.S. Zahniser, D.D. Nelson, J.H. Shorter, S. Herndon, E. Wood and R. Wehr, 2010. Application of quantum cascade lasers to high-precision atmospheric trace gas measurements. Opt. Eng., 49: 111-124, doi:10.1117/1.3498782.
  23. Middelburg J.J., J. Nieuwenhuize, N. Iversen, N. Hogh, H. Dewilde, W. Helder, R. Seifert and O. Christof, 2002. Methane distribution in European tidal estuaries. Biogeochemistry, 59: 95-119. https://doi.org/10.1023/A:1015515130419
  24. Miller, B.R., R.F. Weiss, P.K. Salameh, T. Tanhua, B.R. Greally, J. Muhle, P.G. Simmonds, 2008. Medusa: A Sample Preconcentration and GC/MS Detector System for in Situ Measurements of Atmospheric Trace Halocarbons, Hydrocarbons, and Sulfur Compounds. Anal. Chem., 80: 1536-1545. https://doi.org/10.1021/ac702084k
  25. Miller, J.B., K.A. Mack, R. Dissly, J.W.C. White, E.J. Dlugokencky and P.P. Tans, 2002. Development of analytical methods and measurements of $^{13}C/^{12}C$ in atmospheric $CH_4$ from the NOAA Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network. J. Geophys. Res., 107: 4178. https://doi.org/10.1029/2001JD000630
  26. Mohn, J., C. Guggenheim, B. Tuzson, M.K. Vollmer, S. Toyoda, N. Yoshida and L. Emmenegger, 2010. liquid nitrogen-free preconcentration unit for measurements of ambient $N_2O$ isotopomers by QCLAS. Atmos. Meas. Tech., 3: 609-618, doi:10.5194/amt-3-609-2010.
  27. Petrenko, W., A.M. Smith, E.J. Brook, D. Lowe, K. Riedel, G. Brailsford, Q. Hua, H. Schaefer, N. Reeh, R.F. Weiss, D. Etheridge and J.P. Severinghaus, 2009. ($CH_4$)-C-14 Measurements in Greenland ice: Investigating last glacial termination $CH_4$ sources. Science. 324: 506-508, doi:10.1126/science.1168909.
  28. Quay P., J. Stutsman, D. Wilbur, A. Snover, E. Dlugokencky and T. Brown, 1999. The isotopic composition of atmospheric methane. Global Biogeochem. cycl., 13: 445-461. https://doi.org/10.1029/1998GB900006
  29. Rella, C.W., J. Hoffnagle, Y. He and S. Tajima, 2015. Local-and regional-scale measurements of $CH_4$, $^{13}CH_4$, and $C_2H_6$ in the Uintah Basin using a mobile stable isotope analyzer. Atmos. Meas. Tech., 8: 4539-4559. https://doi.org/10.5194/amt-8-4539-2015
  30. Repeta D.J., S. Ferron, O.A. Sosa, C.G. Johnson, L.D. Repeta, M. Acker. E.F. DeLong and D.M. Karl, 2016. Marine methane paradox explained by bacterial degradation of dissolved organic matter. Nature Geosci. 9: 884-887. https://doi.org/10.1038/ngeo2837
  31. Rhee, T.S., A.J. Kettle and M.O. Andreae, 2009. Methane and nitrous oxide emissions from the ocean: A reassessment using basin-wide observations in the Atlantic. J. Geophys. Res., 114: D12304, doi:10.1029/2008JD011662.
  32. Rice, A.L., A.A. Gotoh, H.O. Ajie and S.C. Tyler, 2001. High-precision continuous-flow measurement of $^{13}C$ and D of atmospheric $CH_4$. Anal. Chem., 73: 4104- 4110. https://doi.org/10.1021/ac0155106
  33. Rothman, L.S., A. Barbe, D. Chris Benner, L.R. Brown, C. Camy-Peyret, M.R. Carleer , K. Chance, C. Clerbaux, V. Dana, V.M. Devi, A. Fayt, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, K.W. Jucks, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, V. Nemtchinov, D.A. Newnham, A. Perrin, C.P. Rinsland, J. Schroeder, K.M. Smith, M.A.H. Smith, K. Tang, R.A. Toth, J. Vander Auwera , P. Varanasi and K. Yoshino, 2003. The HITRAN Molecular Spectroscopic Database: Edition of 2000 including Updates through 2001. J. Quant. Spec. Rad. Transfer, 82: 5-44. https://doi.org/10.1016/S0022-4073(03)00146-8
  34. Santoni, G.W., B.H. Lee, J.P. Goodrich, R.K. Varner, P.M. Crill, J.B. McManus, D.D. Nelson, M.S. Zahniser and S.C. Wofsy, 2012. Mass fluxes and isofluxes of methane ($CH_4$) at a New Hampshire fen measured by a continuous wave quantum cascade laser spectrometer. J. Geophys. Res. Atmos., 117: D10301, doi:10.1029/2011JD016960.
  35. Shim J.H., D.-J. Kang, I.S. Han, J.N. Kwon and Y.-H. Lee, 2012. Real-time monitoring of environmental properties at seaweed farm and a simple model for $CO_2$ budget. J. Kor. Soc. Oceangr., 17: 243-251.
  36. Stohl, A., C. Forster, A. Frank, P. Seibert and G. Wotawa, 2005. Tech note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys., 5: 2461-2474. https://doi.org/10.5194/acp-5-2461-2005
  37. Tuzson, B., J. Mohn, M.J. Zeeman, R.A. Werner, W. Eugster, M.S. Zahniser, D.D. Nelson, J.B. McManus and L. Emmenegger, 2008. High precision and continuous field measurements of $^{13}C$ and $^{18}O$ in carbon dioxide with a cryogen-free QCLAS. Appl. Phys. B-Laser O., 92: 451-458. https://doi.org/10.1007/s00340-008-3085-4
  38. Tuzson, B., S. Hennne, D. Brunner, M. Steinbacher, J. Mohn, B. Buchmann, and L. Emmenegger, 2011. Continuous isotopic composition measurements of tropospheric $CO_2$ at Jungfraujoch (3580 m a.s.l.), Switzerland: real-time observation of regional pollution events. Atmos. Chem. Phys., 11:1685-1696, doi:10.5194/acp-11-1685-2011.
  39. Tyler, S.C., A.I. Rice and H.O. Ajie, 2007. Stable isotope ratios in atmospheric $CH_4$: Implications for seasonal sources and sinks. J. Geophys. Res., 112: D03303, doi:10.1029/2006JD007231.
  40. Voulgarakis, A., V. Naik, J.-F.Lamarque, D.T. Shindell, P.J. Young, M.J. Prather, O. Wild, R.D. Field, D. Bergmann, P. Cameron-Smith, I. Cionni, W.J. Collins, S.B. Dalsoren, R.M. Doherty, V. Eyring, G. Faluvegi, G.A. Folberth, L.W. Horowitz, B. Josse, I.A. MacKenzie, T. Nagashima, D.A. Plummer, M. Righi, S.T. R umbold, D.S. Stevenson, S.A. Strode, K. Sudo, S. Szopa and G. Zeng, 2013. Analysis of present day and future OH and methane lifetime in the ACCMIP simulations. Atmos. Chem. Phys., 13: 2563-2587. https://doi.org/10.5194/acp-13-2563-2013
  41. Waechter, H., J. Mohn, B. Tuzson, L. Emmenegger and M.W. Sigrist, 2008. Determination of $N_2O$ isotopomers with quantum cascade laser based absorption spectroscopy. Opt. Express, 16: 9239-9244, doi:10.1364/OE.16.009239.
  42. Wahl, E.H., B. Fidric, C.H. Rella, S. Koulikov, B. Kharlamov, S. Tan, A.A. Kachanov, A. Richman, E.R. Crosson, B.A. Paldus, S. Kalaskar and D.R. Bowling, 2006. Applications of cavity ring-down spectroscopy to high precision isotope ratio measurement of $^{13}C$/$^{12}C$ in carbon dioxide. Isot. Environ. Healt. S., 42: 21-35. https://doi.org/10.1080/10256010500502934
  43. Wang, Y., M.B. McElroy, J.W. Munger, J. Hao1, H. Ma1, C.P. Nielsen and Y. Chen, 2008. Variations of $O_3$ and CO in summertime at a rural site near Beijing. Atmos. Chem. Phys., 8: 6355-6363.
  44. Weiss, R.F., F.A. Van Woz, P.K. Salameh, 1992. Surface water and atmospheric carbon dioxide and nitrous oxide observations by shipboard automated gas chromatography: Results from expeditions between 1977 and 1990. SIO 92-11, 124 pp., Oak Ridge Nat. Lab., Oak Ridge, Tenn.
  45. Welp, L.R., X. Lee, T.J. Griffis, X.-F. Wen, W. Xiao, S. Li, X. Sun, Z. Hu, M. Val Martin and J. Huang, 2012. A meta analysis of water vapor deuterium-excess in the mid latitude atmospheric surface layer. Global Biogeochem. Cycles, 26: GB3021, doi:10.1029/2011GB004246.
  46. Werle, P., 2011. Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence. Appl. Phys. B, 102: 313-329, doi:10.1007/s00340-010-4165-9.
  47. Whiticar, M. and H. Schaefer, 2007. Constraining past global tropospheric methane budgets with carbon and hydrogen isotope ratios in ice. Phil. Trans. R. Soc. A, 365: 1793-1828. https://doi.org/10.1098/rsta.2007.2048
  48. Witinski, M., D.S. Sayres and J.G. Anderson, 2011. High precision methane isotopologue ratio measurements at ambient mixing ratios using integrated cavity output spectroscopy. Appl. Phys. B, 102: 375-380, doi:10.1007/s00340-010-3957-2.
  49. Wofsy, S.C., 2011. HIAPER Pole-to-Pole Observations (HIPPO): fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols. Royal Society. 369: 2073-2086, doi:10.1098/rsta.2010.0313.
  50. Zahniser, M.S., D.D. Nelson, J.B. McManus, S.C. Herdon, E.C. Wood, J.H. Shorter, B.H. Lee, G.W. Santoni, R. Jimnez and B.C. Daube, 2009. Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: Enhanced capabilities using continuous wave QCLs. Proc. SPIE., 7222: 7222OH:1-7222OH:9.