DOI QR코드

DOI QR Code

Groundwater-Stream Water Interaction Induced by Water Curtain Cultivation Activity in Sangdae-ri Area of Cheongju, Korea

청주 상대리지역에서 수막재배가 지하수-하천수 상호작용에 미치는 영향

  • Moon, Sang-Ho (Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Kim, Yongcheol (Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Jeong, Youn-Young (Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Hwang, Jeong (Dept. of Construction Safety and Disaster Prevention, Daejeon University)
  • 문상호 (한국지질자원연구원 지구환경연구본부 지하수연구실) ;
  • 김용철 (한국지질자원연구원 지구환경연구본부 지하수연구실) ;
  • 정윤영 (한국지질자원연구원 지구환경연구본부 지하수연구실) ;
  • 황정 (대전대학교 건설안전방재공학과)
  • Received : 2015.12.13
  • Accepted : 2016.03.11
  • Published : 2016.04.28

Abstract

Most of riverside in Korea, in case of application of water curtain cultivation (WCC) technique, has been inveterately suffering from the gradual drawdown of groundwater level and related shortage of water resources during the WCC peak time. We believe that the water resources issue in these riverside areas can be effectively solved when the interaction between groundwater and nearby surface water is well understood. To investigate the connection between stream and ground water, and the influence of stream water on the nearby aquifer, this study examined the water temperature and oxygen and hydrogen stable isotopic compositions. The study area is well-known strawberry field applying the WCC technique in Sangdae-ri, Gadeok-myon, Cheongju City, and the sampling was done from February 2012 through June 2014 for stream and ground water. Some groundwater wells near stream showed big temporal variations in water temperature, and their oxygen and hydrogen stable isotopes showed similar compositions to those of adjacent stream water. This indicates that the influence of stream water is highly reflected in the stable isotopic composition of groundwater. Four cross-sectional lines from stream to hillside were established in the study area to determine the spatial differences in water quality of wells. At the late stage of WCC in February to March, groundwater of wells in line with short cross-sectional length showed the narrow range of isotopic compositions; however, those in the long cross-sectional line showed a wide compositional range. It was shown that the influence of the stream water at the late WCC stage have reached to the distance of 160 to 165 m from stream line, which is equivalent to the whole length and one-third point in each short and long cross-sectional line, respectively. Therefore, the wide compositional range in the long cross-sectional lines was not only due to the influence of stream water, but apparently resulted from the change of relative impact of each groundwater supplying from two or more aquifers. In view of stable isotopic compositions, there seems to be three different aquifers in this study area, which is competing for dominance of water quality in wells at each period of WCC.

우리나라에서 수막재배가 이루어지는 수변지역 대부분은 성수기에 지하수위 하강과 함께 지하수 고갈 문제로 항시 어려움을 겪고 있다. 이러한 수변지역에서의 지하수 자원량 문제는 인근 하천수와의 연계 특성이 고려될 때 효율적으로 해결될 수 있다. 이 연구에서는 지하수와 하천수와의 연계성 및 지하수 대수층에 미치는 하천수의 영향을 논의하기 위해, 지하수의 토출온도, 지하수와 하천수의 산소 수소 안정동위원소 조성 변화 특성을 검토하였다. 연구지역은 딸기 수막재배지로 잘 알려진 청주시 가덕면 상대리 지역이며, 지하수와 하천수의 시료 채취는 2012년 2월부터 2014년 6월까지 실시되었다. 하천 가까이 분포하는 지하수 관정들 중 일부는 하천수의 영향 정도에 따라 측정 시기별로 용출온도의 변화가 심한 것들이 관찰되었으며, 이들의 산소 수소 안정동위원소 조성비는 대부분 하천수의 산소 수소 안정동위원소 조성비와 유사함을 보였다. 이는 지하수에 미치는 하천수의 영향이 산소 수소 안정동위원소 조성비 변화에 반영되고 있음을 지시한다. 관정 위치에 따른 공간적 변화 양상을 알아보기 위하여, 하천으로부터 우측 구릉지까지 4개의 측선을 설정하였다. 수막재배 말기인 2-3월 시기에, 하천에서 구릉지까지의 거리가 짧은 측선상의 관정들은 좁은 범위의 산소 수소 안정동위원소 조성 범위를 보인 반면에, 하천에서 구릉지까지의 거리가 긴 측선상의 관정들은 폭넓은 산소 수소 안정동위원소 조성 범위를 보였다. 연구지역에서 하천이 지하수에 미치는 영향 거리는 수막재배 말기에 최대 160~165 m 정도인 것으로 해석되었다. 이는 폭이 좁은 측선에서는 전체 거리에 해당되며, 폭이 넓은 측선에서는 전체 길이의 약 1/3 지점에 해당된다. 따라서, 폭이 넓은 측선상에서 관찰되는 넓은 범위의 산소 수소 안정동위원소 조성은 하천수의 영향 뿐 아니라 2개 이상의 대수층들간의 영향력 변화에서 기인되는 것으로 해석된다. 산소 수소 안정동위원소 조성으로 볼 때, 연구지역 내에는 3개 대수층이 존재하는 것으로 추정되며, 이들 대수층이 관정 내에 미치는 상호 영향력은 수막재배 시기별로 달라지는 것으로 보인다.

Keywords

References

  1. Chang, S. and Chung, I.-M. (2014) Analysis of groundwater variations using the relationship between groundwater use and daily minimum temperature in a water curtain cultivation site. Jour. Eng. Geol., v.24, No.2, p.217-225. https://doi.org/10.9720/kseg.2014.2.217
  2. Chung, I.-M. and Kim, N.-W. (2009) Case of surfaceground water interaction and its application. Water for future, v.42, p.10-18.
  3. Chung, I.-M., Lee, J. and Kim, N.-W. (2011) Estimating exploitable groundwater amount in Musimcheon watershed by using an integrated surface watergroundwater model. Econ. Environ. Geol., v.44, No.5, p.433-442. https://doi.org/10.9719/EEG.2011.44.5.433
  4. Clark, I. and Fritz, P. (1997) Environmental isotopes in hydrogeology. Lewis Publishers, New York, 328p.
  5. Craig, H. (1961) Isotopic variations in meteoric water. Science, v.133, p.1702-1703. https://doi.org/10.1126/science.133.3465.1702
  6. Darling, W.G. and Bath, A.H. (1988) A stable isotope study of recharge processes in the English chalk. Journal of Hydrology, v.101, p.31-46. https://doi.org/10.1016/0022-1694(88)90026-1
  7. Epstein, S. and Mayeda, T.K. (1953) Variations of the $^{18}O$ conten of waters from natural sources. Geochimica et Cosmochimica acta, v.4, p.213-224. https://doi.org/10.1016/0016-7037(53)90051-9
  8. Gat, J.R. and Carmi, I. (1970) Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area. Journal of Geophysical Research, v.75, p. 3039-3048. https://doi.org/10.1029/JC075i015p03039
  9. Gupta. P., Noone, D., Galewsky, J., Sweeney, C. and Vaughn, B.H. (2009) Demonstration of high-precisiion continuous measurements of water vapor isotopologues in laboratory and remote field deployments using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) technology. Rapid Commun. Mass Spectrom. v.23. p.2534-2542. https://doi.org/10.1002/rcm.4100
  10. Ha, K., Ko, K.-S., Koh D.-C., Yum, B.-W. and Lee K.-K. (2006) Time series analysis of the responses of the groundwater levels at multi-depth wells according to the river stage fluctuations. Econ. Environ. Geol., v.39, No.3, p.269-284.
  11. Hyun, S.G., Woo, N.C., Shin W. and Hamm, S.-Y. (2006) Characteristics of groundwater quality in a riverbank filtration area. Econ. Environ. Geol., v.39, No.2, p.151-162.
  12. Jeon, H.-T. and Kim, G.-B. (2011) Evaluation of interactions between surface water and groundwater based on temperature, flow properties, and geochemical data. The Journal of Engineering Geology, v.21, No.1, p.45-55. https://doi.org/10.9720/kseg.2011.21.1.045
  13. Jung, Y.Y., Koh, D.C., Lee, J. and Ko, K.S. (2013) Applications of isotope ratio infrared spectroscopy (IRIS) to analysis of stable isotopic compositions of liquid water. Econ. Environ. Geol., v.46, No.6, p.495-508. https://doi.org/10.9719/EEG.2013.46.6.495
  14. Kerstel, E. and Gianfrani, L. (2008) Advances in laserbased isotope ratio measurements: Selected applications. Appl. Phys., v.92, p.439-449.
  15. KIGAM (2010) Integrated technologies in securing and applying groundwater resources to cope with earth environmental changes. GP2009-009-01-2010(2), 347p.
  16. Kim, G.B., Son, Y.C., Lee, S.H., Jeong, A.C., Cha, E.J. and Ko, M.J. (2012) Understanding of surface watergroundwater connectivity in an alluvial plain using statistical methods. Jour. Eng. Geol., v.22, n.2, p.207-221. https://doi.org/10.9720/kseg.2012.22.2.207
  17. Kim, K.-Y., Con, C.-M., Kim, T., Oh, J.-H., Jeoung, J.-H. and Park, S.-K. (2006) Use of temperature as a tracer to study stream-groundwater exchange in the hyporheic zone. Econ. Environ. Geol., v.39, No.5, p.525-535.
  18. Lee, B.-J., Kim, D.-H., Choi, H.-I., Kee, W.-S. and Park, K.-H. (1996) 1:250,000 Explanatory note of the Daejeon Sheet. KR-95(S)-1, 59p.
  19. Lee, E.S. (2004) Ground water sustainability and ground water-surface water interaction. Jour. Geol. Soc. Korea, v.40, n.3, p.361-368.
  20. Lee, K.-S. and Chang, B.-U. (1994) Oxygen and hydrogen isotopic compostion of precipitation in Taejeon and Seoul, Korea. Jour. Geol. Soc. Korea, v.30, p.475-481.
  21. Lee, K.S. and Lee, C.B. (1999) Oxygen and hydrogen isotopic composition of precipitation and river waters in South Korea. Jour. Geol. Soc. Korea, v.35, p.73-84.
  22. Lee, S.I., Kim, B.C. and Kim, S.M. (2004) Effective use of water resources through conjunctive use - (1) The Methodology. Journal of KWRA(Korea Water Resources Association), v.37, No.10, p.789-798. https://doi.org/10.3741/JKWRA.2004.37.10.789
  23. MOLTMA(Ministry of Land, Transport and Maritime Affairs) and KICTEP(Korea Institute of Construction & Transportation Technology Evaluation and Planning) (2012) R&D Report for Groundwater level restoration of riverside porous aquifer. R&D/11Technology Renovation CO5-2, 104p.
  24. MOLIT(Ministry of Land, Infrastructure and Transport) and KAIA(Korea Agency for Infrastructure Advancement) (2013) R&D Report for Groundwater level restoration of riverside porous aquifer. R&D/11Technology Renovation CO5-2, 225p.
  25. Moon, S.-H. Cho, S.H., Lee, K.-S. and Yun, U. (2007) The variation of oxygen and hydrogen isotopic composition in precipitation and geothermal waters from the Yuseong catchment. Econ. Environ. Geol., v.40, p.389-401.
  26. Moon, S.H., Ha, K., Kim, Y. and Yoon, P. (2012) Analysis of groundwater use and discharge in water curtain cultivation areas: Case study of the Cheongweon and Chungju areas. Jour. Eng. Geol., v.22, n.4, p.387-398. https://doi.org/10.9720/kseg.2012.4.387
  27. Moon, S.-H., Kim, Y. and Hwang, J. (2015) Water quality in a drainage system discharging groundwater from Sangdae-ri water curtain cultivation area near Musimcheon stream, Cheongju, Korea. Kor. Soc. Econ. and Envir. Geol., v.48, p.409-420. https://doi.org/10.9719/EEG.2015.48.5.409
  28. Morrison, J., Brockwell, T., Merren, T., Fourel, F. and Phillips, A.M. (2001) On-line high precision stable hydrogen isotopic analyses on nanoliter water samples. Analytical Chemistry, v.73, p.3570-3575. https://doi.org/10.1021/ac001447t
  29. Sophocleous, M.A. (2002) Interactions between groundwater and surface water: The state of the science. Hydrogeology Journal, v.10, p.52-67. https://doi.org/10.1007/s10040-001-0170-8
  30. Winter, T.C., Harvey, J.W., Franke, O.L. and Alley, W.M. (1998) Ground water and surface water, a single resource. U.S. Geological Survey Circular, 1139, 79p.
  31. Winter, T.C. (1999) Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeology Journal, v.7, p.28-45. https://doi.org/10.1007/s100400050178

Cited by

  1. Impacts of Seasonal Pumping on Stream-Aquifer Interactions in Miryang, Korea vol.55, pp.6, 2017, https://doi.org/10.1111/gwat.12543
  2. Analysis and evaluation of hydrological components in a water curtain cultivation site vol.49, pp.09, 2016, https://doi.org/10.3741/JKWRA.2016.49.9.731
  3. Modeling Stream-Aquifer Interactions Under Seasonal Groundwater Pumping and Managed Aquifer Recharge pp.0017467X, 2018, https://doi.org/10.1111/gwat.12799