• Title/Summary/Keyword: Isolated boost

Search Result 104, Processing Time 0.025 seconds

A Novel Negative-Output High Step-up Ratio DC-DC Converter Based on Switched-Inductor Cell

  • Kim, Ho-Yeon;Moon, Eun-A;Nguyen, Minh-Khai
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.273-279
    • /
    • 2019
  • A high boost dc-dc converter based on the switched-inductor cell (SL-cell) is suggested in this paper. The suggested converter can provide a high voltage gain that is more than 6. Moreover, the voltage gain can be easily increased by extending a SL cell or a modular voltage boost stage. This paper shows the key waveforms, the operating principles at the continuous conduction mode (CCM), and a comparison between the suggested converter and the other non-isolated converters. In addition, the extension of the suggested converter is presented. The simulation results were shown to reconfirm the theoretical analysis.

Design of DC-DC Converter to Charge and Discharge Lithium Battery Using Isolated Boost Converter and Forward Converter (절연된 부스트 변환기와 포워드 변환기를 이용한 리튬전지 충방전용 직류-직류 변환기의 설계)

  • Kim, Hee-Sun;Chung, Dae-Taek;Hong, Soon-Chan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.441-450
    • /
    • 2010
  • Lithium battery is widely used as the power source of various electronic devices. The formation process which is the repeated charging and discharging process is essential in the production of lithium battery. In this paper, it is proposed and designed the DC-DC converter that can charge and also discharge the lithium battery in one converter. The proposed converter is designed by considering the charge/discharge characteristics of the lithium battery. The converter is operated as a forward converter in charging process and a electrically isolated boost converter in discharging process. Based on the analyses, the number of transformer turns, inductor, capacitor, and switching devices are designed. Finally, the validity of the design for the proposed converter is verified by both simulations and experiments.

Novel Passive Snubber Suitable for Three-Phase Single-Stage PFC Based on an Isolated Full-Bridge Boost Topology

  • Meng, Tao;Ben, Hongqi;Wang, Daqing;Song, Jianfeng
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.264-270
    • /
    • 2011
  • In this paper a novel passive snubber is proposed, which can suppress the voltage spike across the bridge leg of the isolated full-bridge boost topology. The snubber is composed of capacitors, inductors and diodes. Two capacitors connected in series are used to absorb the voltage spike and the energy of each capacitor can be transferred to the load during one switching cycle by the resonance of the inductors and capacitors. The operational principle of the passive snubber is analyzed in detail based on a three-phase power factor correction (PFC) converter, and the design considerations of both the converter and the snubber are given. Finally, a 3kW laboratory-made prototype is built. The experimental results verify the theoretical analysis and evaluations. They also prove the validity and feasibility of the proposed methods.

Soft Switching Single Stage AC-DC Full Bridge Boost Converter Using Non-Dissipative Snubber (무손실 스너버 적용 소프트 스위칭 Single Stage AC-DC Full Bridge Boost 컨버터)

  • 김은수;조기연;김윤호;조용현;박경수;안호균;박순구
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.377-383
    • /
    • 1999
  • A new soft switching single stage AC-DC full bridge boost converter with unit input power factor and isolated output i is presented in this paper. Due to the use of a non-dissipative snubber on the primary side, a single stage high-power f factor isolated full bridge boost converter has a significant reduction of switching losses in the main switching devices. The non-dissipative snubber adopted in this study consists of a snubber capacitor Cr, a snubber inductor Cr, a fast r recovery snubber diode Dr' and a commutation diode Dp. This paper presents the complete operating principles, t theoretical analysis and experimental results.

  • PDF

Development of 6kW ZVS Boost Converter by 4-Parallel Operation (4-병렬 제어 기법을 적용한 6kW 영전압 스위칭 승압형 컨버터 개발)

  • Rho, Min-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.86-92
    • /
    • 2009
  • This paper presents development of 6kw ZVS(Zero Voltage Switching) boost converter by 4-parallel operation. To realize a high capacity converter with 6 kw, 4-parallel operation of 1.5kW unit module is proposed in this paper. To meet high ratio input to output voltage, isolated type booster converter is designed. To achieve ZVS operation of 4-switches of full bridge and protect a voltage overshoot caused by switch turn-off, simple active-clamp circuit is applied to the primary side. For parallel operation of 4-modules, master-slave control method is proposed to achieve input current sharing of 4-unit converter modules accurately. For performance tests, simulation is carried out. Also, load and experimental tests of the developed booster converter, 230Vdc/6kW, are carried out under various conditions. For field tests, the developed converter is applied for boosting a battery power to high DC_link voltage for a VSI inverter which starts a micro-turbine(MT) installed in vehicle and it's performance is verified through high speed motoring a MT up to tens of thousands of rpm.

The Secondary LLC Series Resonant Converter for the Boost DC/DC Converter (변압기 2차측 LLC 직렬공진컨버터 적용 승압형 DC/DC 컨버터)

  • Lee Hyun-Kwan;Lee Gi-Sik;Chung Bong-Geon;Kong Young-Su;Kim Eun-Soo;Cha In-Su;Yoon Jeong-Phil
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.277-280
    • /
    • 2006
  • Recently, the high frequency isolated boost DC/DC converter has been widely used for the PCS (Power Conditioning System) system because of its small size and low cost. However, the high frequency isolated boost DC/DC converters applied the conventional voltage-fed converter and current-fed converter have the problems such as the high conduction losses and the surge voltage due to the high circulating current and the leakage inductance, respectively. To overcome this problems, in this paper the secondary LLC resonant converter is proposed, and the experimental results of the secondary LLC series resonant converter for boost DC/DC converter are verified on the simulation based on the theoretical analysis and the 1kW experimental prototype.

  • PDF

A Novel Boost DC-DC Converter using High Frequency Coupled Inductor Series Resonant ZCS-PFM Chopper Control Method (고주파 결합 인덕터 직렬 공진형 ZCS-PFM 초퍼 제어 방식을 이용한 새로운 승압형 DC-DC 컨버터)

  • Kim, Hong-Shin;Heo, Young-Hwan;Mun, Sang-Pil;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.2
    • /
    • pp.63-68
    • /
    • 2017
  • This paper proposes a new non-isolated DC conversion circuit topology of the voltage source coupled inductor series resonant high-frequency PFM controlled boost chopper type DC-DC power converter using two in one IGBT power module, which can efficiently operate under a principle of zero current soft switching for wide output regulation voltage setting ranges and wide fluctuation of the input DC side voltage as well as the load variation ranges. Its steady state operating principle and the output voltage regulation characteristics in the open-loop-based output voltage control scheme without PI controller loop are described and evaluated from theoretical and experimented viewpoints. Finally, in this paper the computer-aided simulation steady-state analysis and the experimental results are presented in order to prove the effectiveness and the validity of voltage regulation characteristics of the proposed series resonant zero current soft switching boost chopper type DC-DC power converter circuit using IGBTs which is based on simple pulse frequency modulation strategy more than, 20kHz.

A New Family of Non-Isolated Zero-Current Transition PWM Converters

  • Yazdani, Mohammad Rouhollah;Dust, Mohammad Pahlavan;Hemmati, Poorya
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1669-1677
    • /
    • 2016
  • A new auxiliary circuit for boost, buck, buck-boost, Cuk, SEPIC, and zeta converters is introduced to provide soft switching for pulse-width modulation converters. In the aforementioned family of DC-DC converters, the main and auxiliary switches turn on under zero current transition (ZCT) and turn off with zero voltage and current transition (ZVZCT). All diodes commutate under soft switching conditions. On the basis of the proposed converter family, the boost topology is analyzed, and its operating modes are presented. The validity of the theoretical analysis is justified by the experimental results of a 100W, 100 kHz prototype. The conducted electromagnetic emissions of the proposed boost converter are measured and found to be lower than those of another ZCT boost converter.

A New Transformer Isolated Buck-Boost DC-DC Converter (새로운 절연형 Buck-Boost DC-DC 컨버터)

  • Cha, Hon-Nyong;Lee, Jong-Pil;Lee, Kyung-Jun;Kim, Tae-Jin;Yoo, Dong-Wook
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.154-155
    • /
    • 2010
  • 본 논문은 최소의 스위칭 소자를 이용한 절연형 Full-Bridge (FB) buck-boost DC-DC 컨버터를 제안한다. 기존의 dual-bridge 방식을 이용한 buck-boost 컨버터와는 달리 본 논문에서 제안한 방식은 변압기 1차측에만 스위칭 소자를 사용하고 2차측에는 다이오드 정류기를 사용한다. 필요한 buck-boost 기능을 구현하기 위하여 입력단에 2개의 인덕터를 추가하여 2 phase interleaved 방식으로 동작을 한다. 500 W 의 prototype을 제작하여 본 논문에서 제안한 방식의 타당성을 실험적으로 검증 한다.

  • PDF

An Isolated High Step-Up Converter with Non-Pulsating Input Current for Renewable Energy Applications

  • Hwu, Kuo-Ing;Jiang, Wen-Zhuang
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1277-1287
    • /
    • 2016
  • This study proposes a novel isolated high step-up galvanic converter, which is suitable for renewable energy applications and integrates a boost converter, a coupled inductor, a charge pump capacitor cell, and an LC snubber. The proposed converter comprises an input inductor and thus features a continuous input current, which extends the life of the renewable energy chip. Furthermore, the proposed converter can achieve a high voltage gain without an extremely large duty cycle and turn ratio of the coupled inductor by using the charge pump capacitor cell. The leakage inductance energy can be recycled to the output capacitor of the boost converter via the LC snubber and then transferred to the output load. As a result, the voltage spike can be suppressed to a low voltage level. Finally, the basic operating principles and experimental results are provided to verify the effectiveness of the proposed converter.