Fig. 1. Functional diagram of power-conversion system.
Fig. 2. Voltage-lift technique based non- isolated dc-dc converter in (a) [14] and (b) [15].
Fig. 3. Proposed dc-dc converter.
Fig. 4. Key waveforms of the suggested converter.
Fig. 5. Operating modes of the suggested converter:(a) state 1 and (b) state 2.
Fig. 6. Suggested converter with n-stages.
Fig. 7. Voltage gain comparison.
Fig. 8. Operating modes of the suggested converter: (a) state 1 and (b) state 2.
Fig. 9. Simulation waveforms when Vi = 20 V. From top to bottom: (a) input voltage, inductor La current, capacitor C1 voltage, output voltage; (b) inductor current, Da, Db and Dc voltages; and (c) S1, S2, D1, and D0 voltages.
Fig. 10. Simulation waveforms when Vi = 10 V. From top to bottom: (a) input voltage, inductor La current, C1 capacitor voltage, output voltage; (b) inductors current, Da, Db and Dc voltages; and (c) S1, S2, D1, and D0 voltages
Table 1. Comparison between the suggested converter and other high boost dc-dc converters.
Table 2. List of parameters
References
- K.C. Tseng and C.C.Huang, "High step-up high-efficiency interleaved converter with voltage multiplier module for renewable energy system," IEEE Trans. Ind. Electron., vol. 61, no. 3, pp. 1311-1319, 2014. DOI: 10.1109/TIE.2013.2261036
- C. Mi, H. Bai, C. Wang, and S. Gargies, "Operation, design and control of dual H-bridge-based isolated bidirectional DC-DC converter," IET Power Electron., vol. 1, no. 4, pp. 507-517, 2008. DOI: 10.1049/iet-pel:20080004
- S. Kenzelmann, A. Rufer, D. Dujic, F. Canales, and Y. R. de Novaes, "Isolated dc/dc structure based on modular multilevel converter," IEEE Trans. Power Electron., vol. 30, no. 1, pp. 89-98, 2015. DOI: 10.1109/TPEL.2014.2305976
- G. Wu, X. Ruan, and Z. Ye, "High step-up dc-dc converter based on switched-capacitor and couple inductor," IEEE Trans. Ind. Electron., vol. 65, no. 7, pp. 5572-5579, 2018. DOI: 10.1109/TIE.2017.2774773
- M. Forouzesh, Y. Shen, K. Yari, Y. P. Siwakoti, and F. Blaabjerg, "High-efficiency high step-up dc-dc converter with dual couple inductors for grid-connected photovoltaic systems," IEEE Trans. Power Electron., vol. 33, no. 7, pp. 5967-5982, 2018. DOI: 10.1109/TPEL.2017.2746750
- A. I. Bratcu, I. Munteanu, S. Bacha, D. Picault, and B. Raison,, "Cascaded dc-dc converter photovoltaic systems: power optimization issues," IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 403-411, 2011. DOI: 10.1109/TIE.2010.2043041
- H. C. Liu, F. Li, "A novel high step-up converter with a quasi-active switched- inductor structure for renewable energy systems," IEEE Trans. Power Electron., vol. 31, no. 7, pp. 5030-5039, 2016. DOI: 10.1109/TPEL.2015.2480115
- G. Wu, X. Ruan, and Z. Ye, "Nonisolated high step-up DC-DC converters adopting switched-capacitor cell," IEEE Trans. Ind. Electron., vol. 62, no. 1, pp. 383-393, 2015. DOI: 10.1109/TIE.2014.2327000
- F. S. Garcia, J. A. Pomilio, and G. Spiazzi, "Modeling and control design of the interleaved double dual boost converter," IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3283-3290, 2013. DOI: 10.1109/TIE.2012.2203770
- K. C. Tseng, C. A. Cheng, and C. T. Chen, "High step-up interleaved boost converter for distributed generation using renewable and alternative power sources," IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 5, no. 2, pp. 713-722, 2017. DOI: 10.1109/JESTPE.2016.2611641
- C. T. Pan, C. F. Chuang and C. C. Chu, "A novel transformer-less adaptable voltage quadrupler dc converter with low switch voltage stress," IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4787-4796, 2014. DOI: 10.1109/TPEL.2013.2287020
- P. Saadat and K. Abbaszadeh, "A single-switch high step-up dc-dc converter based on quadratic boost," IEEE Trans. Ind. Electron., vol. 63, no. 12, pp. 7733-7742, 2016. DOI: 10.1109/TIE.2016.2590991
- F. M. Shahir, E. Babaei, and M. Farsadi, "A new structure for non-isolated boost dc-dc converter," J. Circuits, Syst., Comput., vol. 1, no. 1, 2017. DOI: 10.1109/PEDSTC.2017.7910373
- J. Li, and J. Liu, "A negative-output quadratic conversion ratio dc-dc converter with dual working modes," IEEE Trans. Power. Electron., vol. 99, pp. 1-1, 2018. DOI: 10.1109/TPEL.2018.2870421
- F. M. Shahir, E. Babaei, and M. Farsadi, "Extended topology for a boost dc-dc converter," IEEE Trans. Power Electron., vol. 34, no. 3, pp. 2375-2384, 2019. DOI: 10.1109/TPEL.2018.2840683