DOI QR코드

DOI QR Code

A Novel Negative-Output High Step-up Ratio DC-DC Converter Based on Switched-Inductor Cell

  • Kim, Ho-Yeon (Graduate School, Chosun University) ;
  • Moon, Eun-A (Graduate School, Chosun University) ;
  • Nguyen, Minh-Khai (Dept. of Electrical and Electronics Engineering, Ho Chi Minh City University of Technology and Education)
  • Received : 2019.02.24
  • Accepted : 2019.03.28
  • Published : 2019.03.31

Abstract

A high boost dc-dc converter based on the switched-inductor cell (SL-cell) is suggested in this paper. The suggested converter can provide a high voltage gain that is more than 6. Moreover, the voltage gain can be easily increased by extending a SL cell or a modular voltage boost stage. This paper shows the key waveforms, the operating principles at the continuous conduction mode (CCM), and a comparison between the suggested converter and the other non-isolated converters. In addition, the extension of the suggested converter is presented. The simulation results were shown to reconfirm the theoretical analysis.

Keywords

JGGJB@_2019_v23n1_273_f0001.png 이미지

Fig. 1. Functional diagram of power-conversion system.

JGGJB@_2019_v23n1_273_f0002.png 이미지

Fig. 2. Voltage-lift technique based non- isolated dc-dc converter in (a) [14] and (b) [15].

JGGJB@_2019_v23n1_273_f0003.png 이미지

Fig. 3. Proposed dc-dc converter.

JGGJB@_2019_v23n1_273_f0004.png 이미지

Fig. 4. Key waveforms of the suggested converter.

JGGJB@_2019_v23n1_273_f0005.png 이미지

Fig. 5. Operating modes of the suggested converter:(a) state 1 and (b) state 2.

JGGJB@_2019_v23n1_273_f0006.png 이미지

Fig. 6. Suggested converter with n-stages.

JGGJB@_2019_v23n1_273_f0007.png 이미지

Fig. 7. Voltage gain comparison.

Fig. 8. Operating modes of the suggested converter: (a) state 1 and (b) state 2.

JGGJB@_2019_v23n1_273_f0008.png 이미지

JGGJB@_2019_v23n1_273_f0009.png 이미지

Fig. 9. Simulation waveforms when Vi = 20 V. From top to bottom: (a) input voltage, inductor La current, capacitor C1 voltage, output voltage; (b) inductor current, Da, Db and Dc voltages; and (c) S1, S2, D1, and D0 voltages.

JGGJB@_2019_v23n1_273_f0010.png 이미지

Fig. 10. Simulation waveforms when Vi = 10 V. From top to bottom: (a) input voltage, inductor La current, C1 capacitor voltage, output voltage; (b) inductors current, Da, Db and Dc voltages; and (c) S1, S2, D1, and D0 voltages

Table 1. Comparison between the suggested converter and other high boost dc-dc converters.

JGGJB@_2019_v23n1_273_t0001.png 이미지

Table 2. List of parameters

JGGJB@_2019_v23n1_273_t0002.png 이미지

References

  1. K.C. Tseng and C.C.Huang, "High step-up high-efficiency interleaved converter with voltage multiplier module for renewable energy system," IEEE Trans. Ind. Electron., vol. 61, no. 3, pp. 1311-1319, 2014. DOI: 10.1109/TIE.2013.2261036
  2. C. Mi, H. Bai, C. Wang, and S. Gargies, "Operation, design and control of dual H-bridge-based isolated bidirectional DC-DC converter," IET Power Electron., vol. 1, no. 4, pp. 507-517, 2008. DOI: 10.1049/iet-pel:20080004
  3. S. Kenzelmann, A. Rufer, D. Dujic, F. Canales, and Y. R. de Novaes, "Isolated dc/dc structure based on modular multilevel converter," IEEE Trans. Power Electron., vol. 30, no. 1, pp. 89-98, 2015. DOI: 10.1109/TPEL.2014.2305976
  4. G. Wu, X. Ruan, and Z. Ye, "High step-up dc-dc converter based on switched-capacitor and couple inductor," IEEE Trans. Ind. Electron., vol. 65, no. 7, pp. 5572-5579, 2018. DOI: 10.1109/TIE.2017.2774773
  5. M. Forouzesh, Y. Shen, K. Yari, Y. P. Siwakoti, and F. Blaabjerg, "High-efficiency high step-up dc-dc converter with dual couple inductors for grid-connected photovoltaic systems," IEEE Trans. Power Electron., vol. 33, no. 7, pp. 5967-5982, 2018. DOI: 10.1109/TPEL.2017.2746750
  6. A. I. Bratcu, I. Munteanu, S. Bacha, D. Picault, and B. Raison,, "Cascaded dc-dc converter photovoltaic systems: power optimization issues," IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 403-411, 2011. DOI: 10.1109/TIE.2010.2043041
  7. H. C. Liu, F. Li, "A novel high step-up converter with a quasi-active switched- inductor structure for renewable energy systems," IEEE Trans. Power Electron., vol. 31, no. 7, pp. 5030-5039, 2016. DOI: 10.1109/TPEL.2015.2480115
  8. G. Wu, X. Ruan, and Z. Ye, "Nonisolated high step-up DC-DC converters adopting switched-capacitor cell," IEEE Trans. Ind. Electron., vol. 62, no. 1, pp. 383-393, 2015. DOI: 10.1109/TIE.2014.2327000
  9. F. S. Garcia, J. A. Pomilio, and G. Spiazzi, "Modeling and control design of the interleaved double dual boost converter," IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3283-3290, 2013. DOI: 10.1109/TIE.2012.2203770
  10. K. C. Tseng, C. A. Cheng, and C. T. Chen, "High step-up interleaved boost converter for distributed generation using renewable and alternative power sources," IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 5, no. 2, pp. 713-722, 2017. DOI: 10.1109/JESTPE.2016.2611641
  11. C. T. Pan, C. F. Chuang and C. C. Chu, "A novel transformer-less adaptable voltage quadrupler dc converter with low switch voltage stress," IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4787-4796, 2014. DOI: 10.1109/TPEL.2013.2287020
  12. P. Saadat and K. Abbaszadeh, "A single-switch high step-up dc-dc converter based on quadratic boost," IEEE Trans. Ind. Electron., vol. 63, no. 12, pp. 7733-7742, 2016. DOI: 10.1109/TIE.2016.2590991
  13. F. M. Shahir, E. Babaei, and M. Farsadi, "A new structure for non-isolated boost dc-dc converter," J. Circuits, Syst., Comput., vol. 1, no. 1, 2017. DOI: 10.1109/PEDSTC.2017.7910373
  14. J. Li, and J. Liu, "A negative-output quadratic conversion ratio dc-dc converter with dual working modes," IEEE Trans. Power. Electron., vol. 99, pp. 1-1, 2018. DOI: 10.1109/TPEL.2018.2870421
  15. F. M. Shahir, E. Babaei, and M. Farsadi, "Extended topology for a boost dc-dc converter," IEEE Trans. Power Electron., vol. 34, no. 3, pp. 2375-2384, 2019. DOI: 10.1109/TPEL.2018.2840683