• Title/Summary/Keyword: Ion suppression

Search Result 82, Processing Time 0.031 seconds

Status of Low Temperature Polycrystalline Silicon Films and Solar Cells (저온 다결정 실리콘 박막 및 태양전지 연구개발동향)

  • 이정철;김석기;윤경훈;송진수;박이준
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1113-1116
    • /
    • 2003
  • This review article gives a comprehensive compilation of recent developments in low temperature deposited poly Si flms, also known as microcrystalline silicon. The development of various ion energy suppression techniques for plasma enhanced chemical vapour deposition and ionless depositions such as HWCVD and expanding thermal plasma, and their effect on the material and solar cell efficiencies are described. A correlation between ef.ciency and the two most important process parameters, i.e., growth rate and process temperature is carried out. Finally, the application of these poly Si cells in multijunction cell structures and the best efficiencies worldwide by various deposition techniques are discussed.

  • PDF

Suppression Techniques of Subthreshold Hump Effect for High-Voltage MOSFET

  • Baek, Ki-Ju;Na, Kee-Yeol;Park, Jeong-Hyeon;Kim, Yeong-Seuk
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.5
    • /
    • pp.522-529
    • /
    • 2013
  • In this paper, simple but very effective techniques to suppress subthreshold hump effect for high-voltage (HV) complementary metal-oxide-semiconductor (CMOS) technology are presented. Two methods are proposed to suppress subthreshold hump effect using a simple layout modification approach. First, the uniform gate oxide method is based on the concept of an H-shaped gate layout design. Second, the gate work function control method is accomplished by local ion implantation. For our experiments, $0.18{\mu}m$ 20 V class HV CMOS technology is applied for HV MOSFETs fabrication. From the measurements, both proposed methods are very effective for elimination of the inverse narrow width effect (INWE) as well as the subthreshold hump.

Effect of ion implantation on the suppression of abnormal oxide growth over $WSi_2$ (텅스텐 실리사이드 산화시 발생하는 이상산화 현상억제에 미치는 이온 주입효과)

  • 이재갑;노재성;이정용
    • Journal of the Korean Vacuum Society
    • /
    • v.3 no.3
    • /
    • pp.322-330
    • /
    • 1994
  • 다결정실리콘 위에 저압 화학 증착법으로 비정질 WSix를 증착시킨 후에 질소 분위기, 87$0^{\circ}C$ 온 도에서 2시간 동안 열처리를 실시하여 결정화를 이룩한 다음 표면의 산화막을 희석된 불산용액으로 제 거한 후 산화를 실시하면 이상산화막이 형성이 되었다. 이와 같은 이상산화막 형성은 산화 공정전에 P 또는 As 이온 주입을 실시함으로써 억제되고 있었으며 P이온 주입 처리가 As 이온조입보다 이상산화 막 발생 억제에 보다 효율적임이 확인되었다. P이온 주입처리가 보다 효과적인 것은 산화시 산화막내에 형성되는 P2O5 가 산화막의 용융점을 크게 낮추어 양질의 산화막을 형성하는 데 기인하는 것으로 여겨 진다. 마지막으로 이온주입 처리에 의하여 비정질화된 텅스텐 실리사이드 표묘의 산화 기구에 대하여 제안하였다.

  • PDF

Temperature-Dependent Mn Substitution Effect on LiNiO2

  • Seungjae Jeon;Sk. Khaja Hussain;Jin Ho Bang
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.161-167
    • /
    • 2024
  • Despite the important role of manganese (Mn) in cobalt-free, Ni-rich cathode materials, existing reports on the effects of Mn as a substitute for cobalt are not consistent. In this work, we analyzed the performance of cathodes comprised of Li(Ni1-xMnx)O2 (LNMO). Both beneficial and detrimental results occurred as a result of the Mn substitution. We found that a complex interplay of effects (Li/Ni mixing driven by magnetic frustration, grain growth suppression, and retarded lithium insertion/extraction kinetics) influenced the performance and was intimately related to calcination temperature. This indicates the importance of establishing an optimal reaction temperature for the development of high-performance LNMO.

Mechanism on Suppression of Alkali Silica Reaction by Ground Granulated Blast-Furnace Slag in NaCl Solution (NaCl 수용액 중에서 고로슬래그미분말의 알칼리실리카반응에 대한 팽창억제 메카니즘)

  • 김창길;삼포상;강원호
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.1
    • /
    • pp.115-121
    • /
    • 1997
  • This study deals with the suppressing characteristics of alkali-silica reaction by ground granulated blast-furnace slag(GGBS) in NaCl solution. NaCl contents used in the experiment ranges over 0%, 2.8% and 20%. Reactive aggregate used is Japanese andesite. Also, three GGBSs of about 4.000. 6, 000 and $8, 000cm^2/g$ were used in the experiment. The replacement proportions of portland cement by GGBSs were 40%. 60%, 70% and 80%. respectively. The specimens with GGBS were severely contracted according to the increasing replacement ratio in NaCl solution. The contraction rate increases according to the increasing in NaCl content. Also. it does with increasing the blaine fineness of GGRS. It is concluded that the suppression of alkali-silica reaction by GGBS in NaCl solution is complished by contraction of GGBS due to chloride ion induced chemical shrinkage.

Improvement of High-Temperature Performance of LiMn2O4 Cathode by Surface Coating (표면코팅을 통한 LiMn2O4 양극의 고온성능 개선)

  • Lee, Gil-Won;Lee, Jong-Hwa;Ryu, Ji-Heon;Oh, Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.1
    • /
    • pp.81-87
    • /
    • 2009
  • An indium-tin oxide (ITO) coated spinel manganese oxide (${LiMn_2}{O_4}$, LMO) is prepared and its high-temperature ($55^{\circ}C$) cycle performance and rate capability are examined. A severe electrolyte decomposition and film deposition is observed on the un-coated ${LiMn_2}{O_4}$ cathode, which leads to a significant electrode polarization and capacity fading. Such an electrode polarization is, however, greatly reduced for the ITO-coated (> 2 mol%) LMO cathode, which leads to an improved cycle performance. This can be rationalized by a suppression of electrolyte decomposition, which is in turn indebted to a decrease in the direct contact area between LMO and electrolyte. The suppression of film deposition on the ITO-coated LMO cathode is confirmed by infra-red spectroscopy. The rate capability is also improved by the surface coating, which may be resulted from a suppression of resistive film deposition and high electric conductivity of ITO itself.

Suppression of Boron Penetration into Gate Oxide using Amorphous Si on $p^+$ Si Gated Structure (비정질 실리론 게이트 구조를 이용한 게이트 산화막내의 붕소이온 침투 억제에 관한 연구)

  • Lee, U-Jin;Kim, Jeong-Tae;Go, Cheol-Gi;Cheon, Hui-Gon;O, Gye-Hwan
    • Korean Journal of Materials Research
    • /
    • v.1 no.3
    • /
    • pp.125-131
    • /
    • 1991
  • Boron penetration phenomenon of $p^{+}$ silicon gate with as-deposited amorphous or polycrystalline Si upon high temperature annealing was investigated using high frequency C-V (Capacitance-Volt-age) analysis, CCST(Constant Current Stress Test), TEM(Transmission Electron Microscopy) and SIMS(Secondary Ion Mass Spectroscopy), C-V analysis showed that an as-deposited amorphous Si gate resulted in smaller positive shifts in flatband voltage compared wish a polycrystalline Si gate, thus giving 60-80 percent higher charge-to-breakdown of gate oxides. The reduced boron penetration of amorphous Si gate may be attributed to the fewer grain boundaries available for boron diffusion into the gate oxide and the shallower projected range of $BF_2$ implantation. The relation between electron trapping rate and flatband voltage shift was also discussed.

  • PDF

Establishment of Analytical Method for Residues of Ethychlozate, a Plant Growth Regulator, in Brown Rice, Mandarin, Pepper, Potato, and Soybean Using HPLC/FLD

  • Kim, Jae-Young;Lee, Jin Hwan;Lee, Sang-Mok;Chae, Young-Sik;Rhee, Gyu-Seek;Chang, Moon-Ik
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.2
    • /
    • pp.111-119
    • /
    • 2015
  • BACKGROUND: Ethychlozate (ECZ) is a plant growth regulator of synthetic auxin for agricultural commodities (ACs). Accurate and sensitive method to determine ECZ in diverse ACs on global official purpose is required to legal residue regulation. As the current official method is confined to the limited type of crops with poor validation, this study was conducted to improve and extend the ECZ method using high-performance liquid chromatography (HPLC) in all the registered crops with method verification. METHODS AND RESULTS: ECZ and its acidic metabolite (ECZA) were both extracted from acidified samples with acetone and briefly purified by dichloromethane partition. ECZ was hydrolyzed to form ECZA and the combined ECZA was finally purified by ion-associated partition including hexane-washing. The instrumental quantitation was performed using HPLC/ FLD under ion-suppression of ECZA with no interference by sample co-extractives. The average recoveries of intra- and inter-day experiment ranged from 82.0 to 105.2% and 81.7 to 102.8%, respectively. The repeatability and reproducibility for intra- and inter-day measurements expressed as a relative standard deviation was less than 8.7% and 7.4%, respectively. CONCLUSION: Established analytical method for ECZ residue in ACs was applicable to the nation-wide pesticide residues monitoring program with the acceptable level of sensitivity, repeatability and reproducibility.

Deuterium Ion Implantation for The Suppression of Defect Generation in Gate Oxide of MOSFET (MOSFET 게이트 산화막내 결함 생성 억제를 위한 효과적인 중수소 이온 주입)

  • Lee, Jae-Sung;Do, Seung-Woo;Lee, Yong-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.7
    • /
    • pp.23-31
    • /
    • 2008
  • Experiment results are presented for gate oxide degradation under the constant voltage stress conditions using MOSFETs with 3-nm-thick gate oxides that are treated by deuterium gas. Two kinds of methods, annealing and implantation, are suggested for the effective deuterium incorporation. Annealing process was rather difficult to control the concentration of deuterium. Because the excess deuterium in gate oxide could be a precursor for the wear-out of gate oxide film, we found annealing process did not show improved characteristics in device reliability, compared to conventional process. However, deuterium implantation at the back-end process was effective method for the deuterated gate oxide. Device parameter variations as well as the gate leakage current depend on the deuterium concentration and are improved by low-energy deuterium implantation, compared to those of conventional process. Especially, we found that PMOSFET experienced the high voltage stress shows a giant isotope effect. This is likely because the reaction between "hot" hole and deuterium is involved in the generation of oxide trap.

Synthesis and Electrochemical Performance of Reduced Graphene Oxide/AlPO4-coated LiMn1.5Ni0.5O4 for Lithium-ion Batteries

  • Hur, Jaehyun;Kim, Il Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3553-3558
    • /
    • 2014
  • The reduced graphene oxide(rGO)/aluminum phosphate($AlPO_4$)-coated $LiMn_{1.5}Ni_{0.5}O_4$ (LMNO) cathode material has been developed by hydroxide precursor method for LMNO and by a facile solution based process for the coating with GO/$AlPO_4$ on the surface of LMNO, followed by annealing process. The amount of $AlPO_4$ has been varied from 0.5 wt % to 1.0 wt %, while the amount of rGO is maintained at 1.0 wt %. The samples have been characterized by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. The rGO/$AlPO_4$-coated LMNO electrodes exhibit better cyclic performance compared to that of pristine LMNO electrode. Specifically, rGO(1%)/$AlPO_4$(0.5%)- and rGO(1%)/$AlPO_4$(1%)-coated electrodes deliver a discharge capacity of, respectively, $123mAhg^{-1}$ and $122mAhg^{-1}$ at C/6 rate, with a capacity retention of, respectively, 96% and 98% at 100 cycles. Furthermore, the surface-modified LMNO electrodes demonstrate higher-rate capability. The rGO(1%)/$AlPO_4$(0.5%)-coated LMNO electrode shows the highest rate performance demonstrating a capacity retention of 91% at 10 C rate. The enhanced electrochemical performance can be attributed to (1) the suppression of the direct contact of electrode surface with the electrolyte, resulting in side reactions with the electrolyte due to the high cut-off voltage, and (2) smaller surface resistance and charge transfer resistance, which is confirmed by total polarization resistance and electrochemical impedance spectroscopy.