Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.12.3553

Synthesis and Electrochemical Performance of Reduced Graphene Oxide/AlPO4-coated LiMn1.5Ni0.5O4 for Lithium-ion Batteries  

Hur, Jaehyun (Department of Chemical and Biological Engineering, Gachon University)
Kim, Il Tae (Department of Chemical and Biological Engineering, Gachon University)
Publication Information
Abstract
The reduced graphene oxide(rGO)/aluminum phosphate($AlPO_4$)-coated $LiMn_{1.5}Ni_{0.5}O_4$ (LMNO) cathode material has been developed by hydroxide precursor method for LMNO and by a facile solution based process for the coating with GO/$AlPO_4$ on the surface of LMNO, followed by annealing process. The amount of $AlPO_4$ has been varied from 0.5 wt % to 1.0 wt %, while the amount of rGO is maintained at 1.0 wt %. The samples have been characterized by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. The rGO/$AlPO_4$-coated LMNO electrodes exhibit better cyclic performance compared to that of pristine LMNO electrode. Specifically, rGO(1%)/$AlPO_4$(0.5%)- and rGO(1%)/$AlPO_4$(1%)-coated electrodes deliver a discharge capacity of, respectively, $123mAhg^{-1}$ and $122mAhg^{-1}$ at C/6 rate, with a capacity retention of, respectively, 96% and 98% at 100 cycles. Furthermore, the surface-modified LMNO electrodes demonstrate higher-rate capability. The rGO(1%)/$AlPO_4$(0.5%)-coated LMNO electrode shows the highest rate performance demonstrating a capacity retention of 91% at 10 C rate. The enhanced electrochemical performance can be attributed to (1) the suppression of the direct contact of electrode surface with the electrolyte, resulting in side reactions with the electrolyte due to the high cut-off voltage, and (2) smaller surface resistance and charge transfer resistance, which is confirmed by total polarization resistance and electrochemical impedance spectroscopy.
Keywords
Reduced graphene oxide; Aluminum phosphate; 5 V Spinel; Lithium-ion batteries;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ban, C.; Li, Z.; Wu, Z.; Kirkham, M. J.; Chen, L.; Jung, Y. S.; Payzant, E. A.; Yan, Y.; Whittingham, M. S.; Dillon, A. C. Adv. Energy Mater. 2011, 1, 58.   DOI
2 Prabakar, S. J. R.; Hwang, Y. H.; Lee, B.; Sohn, K. S.; Pyo, M. J. Electrochem. Soc. 2013, 160, A832.   DOI
3 Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Nano Lett. 2008, 8, 3498.   DOI   ScienceOn
4 Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.   DOI   ScienceOn
5 Cho, J.; Kim, Y. W.; Kim, B.; Lee, J. G.; Park, B. Angewandte Chemie-International Edition 2003, 42, 1618.   DOI   ScienceOn
6 Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.   DOI
7 Jung, K. H.; Kim, S. B.; Park, Y. J. Journal of the Korean Electrochemical Society 2011, 14, 77.   DOI
8 Wang, G.; Shen, X.; Yao, J.; Park, J. Carbon 2009, 47, 2049.   DOI   ScienceOn
9 Talyosef, Y.; Markovsky, B.; Salitra, G.; Aurbach, D.; Kim, H. J.; Choi, S. J. Power Sources 2005, 146, 664.   DOI   ScienceOn
10 Yi, T.-F.; Xie, Y.; Zhu, Y.-R.; Zhu, R.-S.; Ye, M.-F. J. Power Sources 2012, 211, 59.   DOI
11 Delacourt, C.; Laffont, L.; Bouchet, R.; Wurm, C.; Leriche, J. B.; Morcrette, M.; Tarascon, J. M.; Masquelier, C. J. Electrochem. Soc. 2005, 152, A913.   DOI   ScienceOn
12 Kim, T. H.; Park, J. S.; Chang, S. K.; Choi, S.; Ryu, J. H.; Song, H. K. Adv. Energy Mater. 2012, 2, 860.   DOI
13 Kim, J. S.; Vaughey, J. T.; Johnson, C. S.; Thackeray, M. M. J. Electrochem. Soc. 2003, 150, A1498.   DOI
14 Strobel, P.; Palos, A. I.; Anne, M.; Cras, F. L. J. Mater. Chem. 2000, 10, 429.   DOI
15 Zhong, Q. M.; Bonakdarpour, A.; Zhang, M. J.; Gao, Y.; Dahn, J. R. J. Electrochem. Soc. 1997, 144, 205.   DOI   ScienceOn
16 Amine, K.; Tukamoto, H.; Yasuda, H.; Fujita, Y. J. J. Power Sources 1997, 68, 604.   DOI   ScienceOn
17 Kraytsberg, A.; Ein-Eli, Y. Adv. Energy Mater. 2012, 2, 922.   DOI
18 Park, S. H.; Oh, S. W.; Myung, S. T.; Sun, Y. K. Electrochem. Solid-State Lett. 2004, 7, A451.   DOI   ScienceOn
19 Noguchi, T.; Yamazaki, I.; Numata, T.; Shirakata, M. J. Power Sources 2007, 174, 359.   DOI
20 Sun, Y. K.; Hong, K. J.; Prakash, J.; Amine, K. Electrochem. Commun. 2002, 4, 344.   DOI   ScienceOn
21 Fey, G. T. K.; Lu, C. Z.; Kumar, T. P. J. Power Sources 2003, 115, 332.   DOI   ScienceOn
22 Alcantara, R.; Jaraba, M.; Lavela, P.; Tirado, J. L.; Zhecheva, E.; Stoyanova, R. Chem. Mater. 2004, 16, 1573.   DOI
23 Mukerjee, S.; Yang, X. Q.; Sun, X.; Lee, S. J.; McBreen, J.; Ein-Eli, Y. Electrochim. Acta 2004, 49, 3373.   DOI
24 Prabakar, S. J. R.; Han, S. C.; Singh, S. P.; Lee, D. K.; Sohn, K. S.; Pyo, M. J. Power Sources 2012, 209, 57.   DOI
25 Lee, D. K.; Han, S. C.; Ahn, D.; Singh, S. P.; Sohn, K. S.; Pyo, M. Acs Applied Materials & Interfaces 2012, 4, 6841.
26 Rao, C. V.; Reddy, A. L. M.; Ishikawa, Y.; Ajayan, P. M. Acs Appl. Mater. Interfaces 2011, 3, 2966.   DOI