Browse > Article
http://dx.doi.org/10.5229/JKES.2009.12.1.081

Improvement of High-Temperature Performance of LiMn2O4 Cathode by Surface Coating  

Lee, Gil-Won (Department of Chemical and Biological Engineering and Research Center for Energy Conversion & Storage, Seoul National University)
Lee, Jong-Hwa (Department of Chemical and Biological Engineering and Research Center for Energy Conversion & Storage, Seoul National University)
Ryu, Ji-Heon (Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University)
Oh, Seung-M. (Department of Chemical and Biological Engineering and Research Center for Energy Conversion & Storage, Seoul National University)
Publication Information
Journal of the Korean Electrochemical Society / v.12, no.1, 2009 , pp. 81-87 More about this Journal
Abstract
An indium-tin oxide (ITO) coated spinel manganese oxide (${LiMn_2}{O_4}$, LMO) is prepared and its high-temperature ($55^{\circ}C$) cycle performance and rate capability are examined. A severe electrolyte decomposition and film deposition is observed on the un-coated ${LiMn_2}{O_4}$ cathode, which leads to a significant electrode polarization and capacity fading. Such an electrode polarization is, however, greatly reduced for the ITO-coated (> 2 mol%) LMO cathode, which leads to an improved cycle performance. This can be rationalized by a suppression of electrolyte decomposition, which is in turn indebted to a decrease in the direct contact area between LMO and electrolyte. The suppression of film deposition on the ITO-coated LMO cathode is confirmed by infra-red spectroscopy. The rate capability is also improved by the surface coating, which may be resulted from a suppression of resistive film deposition and high electric conductivity of ITO itself.
Keywords
Lithium-ion batteries; Cathode; ${LiMn_2}{O_4}$; Indium-tin oxide (ITO); Surface coating;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Aurbach, K. Gamolsky, B. Markovsky, G. Salitra, and Y. Gofer, 'The Study of Surface Phenomena Related to Electrochemical Lithium Intercalation into $Li_{x}MO_{y}$ Host Materials (M = Ni, Mn)' J. Electrochem. Soc., 147, 1322 (2000)   DOI   ScienceOn
2 A. Douglas and F. Skoog, James Holler and Timothy A. Nieman, Principles of Instrumental Analysis, 5th edition, pp. 410, Harcourt Brace College Publishers, USA (1998)
3 R. Yazami, 'Surface Chemistry and Lithium Storage Capability of the Graphite-Lithium Electrode' Electrochim. Acta, 45, 87 (1999)   DOI   ScienceOn
4 D. H. Jang, Y. J. Shin, and S. M. Oh, 'Dissolution of Spinel Oxides and Capacity Losses in 4 V $Li/Li_{x}Mn_{2}O_{4}$ cells' J. Electrochem. Soc., 143, 2204 (1996)   DOI
5 G. H. Li, H. Ikuta, and T. Uchida, 'The Spinel Phases $LiM_{y}Mn_{2-y}O_{4}$ (M = Co, Cr, Ni) as the Cathode for Rechargeable Lithium Batteries' J. Electrochem. Soc., 143, 178 (1996)   DOI
6 S. T. Myung, S. Komaba, and N. Kumagai, 'Enhanced Structural Stability and Cyclability of Al-Doped $LiMn_{2}O_{4}$ Spinel synthesized by the Emulsion Drying Method' J. Electrochem. Soc., 148, A482 (2001)   DOI   ScienceOn
7 J. P. Cho, T. J. Kim, Y. J. Kim, and B.W. Park, 'Complete Blocking of $Mn^{3+}$ ion Dissolution from a $LiMn_{2}O_{4}$ Spinel Intercalation Compound by $Co_{3}O_{4}$ Coating' Chem. Commun., 12, 1074 (2001)
8 A. M. Kannan, L. Rabenberg, and A. Manthiram, 'Surface/Chemically Modified $LiMn_{2}O_{4}$ Cathodes for Lithium-Ion Batteries' Electrochem. Solid-State Lett., 5, A167 (2002)   DOI   ScienceOn
9 M. M. Thackeray, C. S. Johnson, J.-S. Kim, K. C. Lauzze, J. T. Vaughey, N. Dietz, D. Abraham, S. A. Hackney, W. A. Zeltner, and M. A. Anderson, '$Zro_{2}-$ and $Li_{2}ZrO_{3}$-stabilized Spinel and Layered Electrodes for Lithium Batteries' Electrochem. Commun., 5, 752 (2003)   DOI   ScienceOn
10 Y. K. Sun, K. J. Hong, and J. Prakash, 'The Effect of ZnO Coating on Electrochemical Cycling Behavior of Spinel $LiMn_{2}O_{4}$ Cathode Materials at Elevated Temperature' J. Electrochem. Soc., 150, A970 (2003)   DOI   ScienceOn
11 R. J. Gummow, A. de Kock, and M. M. Thackeray, 'Improved Capacity Retention in Rechargeable 4 V lithium/lithium manganese oxide (spinel) cells' Solid State Ionics, 69, 59 (1994)   DOI   ScienceOn
12 Y. Y. Xia, Y. H. Zhou, and M. Yoshio, 'Capacity Fading on Cycling of 4 V Li/$LiMn_2O_4$ Cells' J. Electrochem. Soc., 144, 2593 (1997)   DOI   ScienceOn
13 J. M. Tarascon, W. R. Mckinnon, F. Coowar, T. N. Bowmer, G. Amatucci, and D. Guyomard, 'Synthesis Conditions and Oxygen Stoichiometry Effects on Li Insertion into the Spinel $Limn_{2}O_{4}$' J. Electrochem. Soc., 141, 1421 (1994)   DOI   ScienceOn
14 D. Guyomard and J. M. Tarascon, 'The carbon/$Li_{1+x}Mn_{2}O_{4}$ system' Solid State Ionics, 69, 222 (1994)   DOI   ScienceOn
15 S. Megahed and B. Scrosati, 'Lithium-ion Rechargeable Batteries' J. Power Sources, 51, 79 (1994)   DOI   ScienceOn
16 Y. Gao and J. R. Dahn, 'Correlation between the growth of the 3.3 V Discharge Plateau and Capacity Fading in $Li_{1+x}Mn_{2}O_{4}$ Materials' Solid State Ionics, 84, 33 (1996)   DOI   ScienceOn
17 Y. Gao and J. R. Dahn, 'Synthesis and Characterization of $Li_{1+x}Mn_{2}O_{4}$ for Li-Ion Battery Applications' J. Electrochem. Soc., 143, 100 (1996)   DOI
18 Y. Xia and M. Yoshio, 'An Investigation of Lithium Ion Insertion into Spinel Structure Li-Mn-O compounds' J. Electrochem. Soc., 143, 825 (1996)   DOI
19 C. Sigala, D. Guyomard, A. Vebaere, Y. Piffard, and M. Tourmous, 'Positive Electrode Materials with High Operating Voltage for Lithium Batteries: $LiCr_{y}Mn_{2-y}O_{4}$ (0 ${\leq}$ y ${\leq}$ 1)' Solid State Ionics, 81, 167 (1995)   DOI   ScienceOn
20 J. Desilvestro and O. Haas, 'Metal Oxide Cathode Materials for Electrochemical Energy Storage: A Review' J. Electrochem. Soc., 137, 5C (1990)   DOI