• 제목/요약/키워드: Ion bombardment

검색결과 221건 처리시간 0.024초

The effect of plasma damage on electrical properties of amorphous GaInZnO film

  • Kim, Min-Kyu;Park, Jin-Seong;Jeong, Jae-Kyeong;Jeong, Jong-Han;Ahn, Tae-Kyung;Yang, Hui-Won;Lee, Hun-Jung;Chung, Hyun-Joong;Mo, Yeon-Gon;Kim, Hye-Dong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.640-643
    • /
    • 2007
  • The effect of plasma damage was investigated on amorphous gallium-indium-zinc oxide (a-GIZO) films and transistors. Ion-bombardment by plasma process affects to turn semiconductor to conductor materials and plasma radiation may degrade to transistor electrical properties. All damages are easily recovered with a $350^{\circ}C$ thermal annealing.

  • PDF

Oxide Cathodes for Reliable Electron Sources

  • Weon, Byung-Mook;Je, Jung-Ho;Park, Gong-Seog;Koh, Nam-Je;Barratt, David S.;Saito, Tsunenari
    • Journal of Information Display
    • /
    • 제6권4호
    • /
    • pp.35-39
    • /
    • 2005
  • In this paper, we investigate the oxide cathodes for the development of reliable electron sources. Poisoning in oxide cathodes is one of the serious problems in achieving reliable electron emission. In particular, early poisoning induces poor life performance as will be demonstrated herein. The survivability of electron emission sources is significantly improved by high doping of high-speed activator. The robust oxide cathodes with 0.17 % Mg operating at about 1,050 K are expected to work for very long times (>100,000 hours). We suggest that this key idea will contribute to solving the basic problems in oxide cathodes such as poisoning or ion bombardment for high power or high frequency applications of electron sources.

태양전지 제작을 위한 Hollow Cathode Plasma System의 실리콘 건식식각에 관한 연구 (A study on Silicon dry Etching for Solar Cell Fabrication Using Hollow Cathode Plasma System)

  • 유진수;;이준신
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권2호
    • /
    • pp.62-66
    • /
    • 2004
  • This paper investigated the characteristics of a newly developed high density hollow cathode plasma (HCP) system and its application for the etching of silicon wafers. We used SF$_{6}$ and $O_2$ gases in the HCP dry etch process. Silicon etch rate of $0.5\mu\textrm{m}$/min was achieved with $SF_6$$O_2$plasma conditions having a total gas pressure of 50mTorr, and RF power of 100 W. This paper presents surface etching characteristics on a crystalline silicon wafer and large area cast type multicrystlline silicon wafer. The results of this experiment can be used for various display systems such as thin film growth and etching for TFT-LCDs, emitter tip formations for FEDs, and bright plasma discharge for PDP applications.s.

ICP-CVD를 이용한 $SnO_2$ 박막 저온 증착 (Low temperature preparation of $SnO_2$ films by ICP-CVD)

  • Lee, H.Y.;Lee, J.J.
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2007년도 춘계학술발표회 초록집
    • /
    • pp.157-158
    • /
    • 2007
  • Tin oxide films were successfully crystallized without additional heating by inductively coupled plasma assisted chemical vapor deposition (ICP-CVD). The degree of crystallization was affected by the ICP power, hydrogen flow and ion bombardment induced by negative substrate bias. The substrate temperature was increased only up to $150^{\sim}180^{\circ}C$ by plasma heating, which suggests that the formation of $SnO_2$ crystalswas caused by enhanced reactivity of precursors in high density plasma. The hardness of deposited tin oxide films ranged from 5.5 to 11GPa at different hydrogen flow rates.

  • PDF

Magnetron Sputtering 법으로 증착한 ITO 박막의 저온공정에 관한 연구 (A study on the low temperature process of ITO film by magnetron sputtering)

  • 최동훈;금민종;이교웅;김갑석;한전건
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2007년도 춘계학술발표회 초록집
    • /
    • pp.139-140
    • /
    • 2007
  • 본 연구에서는 ion bombardment에 의한 폴리머 기판의 손상을 줄이기 위해 FTS (Facing Target Sputtering) 장치를 이용하여 투명 전극용 ITO 박막을 합성하였다. 산소와 헬륨의 혼합비율을 변수로 하여 박막을 합성한 결과, 투명전극에 적합한 낮은 비저항과 80% 이상의 투과도를 갖는 박막을 합성할 수 있었다.

  • PDF

Dual-frequency Capacitively Coupled Plasma-enhanced Chemical Vapor Deposition System for Solar Cell Manufacturing

  • 권형철;원임희;신현국;;이재구
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.310-311
    • /
    • 2011
  • Dual-frequency (DF) capacitively coupled plasmas (CCP) are used to separately control the mean ion energy and flux at the electrodes [1]. This separate control in capacitively coupled radio frequency discharges is one of the most important issues for various applications of plasma processing. For instance, in the Plasma Enhanced Chemical Vapor Deposition processes such as used for solar cell manufacturing, this separate control is most relevant. It principally allows to increase the ion flux for high deposition rates, while the mean ion energy is kept constant at low values to prevent highly energetic ion bombardment of the substrate to avoid unwanted damage of the surface structure. DF CCP can be analyzed in a fashion similar to single-frequency (SF) driven with effective parameters [2]. It means that DF CCP can be converted into SF CCP with effective parameters such as effective frequency and effective current density. In this study, comparison of DF CCP and its converted effective SF CCP is carried out through particle-in-cell/Monte Carlo (PIC-MCC) simulations. The PIC-MCC simulation shows that DF CCP and its converted effective SF CCP have almost the same plasma characteristics. In DF CCP, the negative resistance arises from the competition of the effective current and the effective frequency [2]. As the high-frequency current increases, the square of the effective frequency increases more than the effective current does. As a result, the effective voltage decreases with the effective current and it leads to an increase of the ion flux and a decrease of the mean ion energy. Because of that, the negative resistance regime can be called the preferable regime for solar cell manufacturing. In this preferable regime, comparison of DF (13.56+100 or 200 MHz) CCP and SF (60 MHz) CCP with the same effective current density is carried out. At the lower effective current density (or at the lower plasma density), the mean ion energy of SF CCP is lower than that of DF CCP. At the higher effective current density (or at the higher plasma density), however, the mean ion energy is lower than that of SF CCP. In this case, using DF CCP is better than SF CCP for solar cell manufacturing processes.

  • PDF

이온화 N2 가스 입사를 이용한 SiNx 나노구조 내부의 Si 나노결정 형성 (Nanocrystalline Si formation inside SiNx nanostructures usingionized N2 gas bombardment)

  • 정민철;박용주;신현준;변준석;윤재진;박용섭
    • 한국진공학회지
    • /
    • 제16권6호
    • /
    • pp.474-478
    • /
    • 2007
  • 실리콘 표면에 이온화된 $N_2$ 가스를 입사한 후 어닐링을 통해서 $SiN_x$ 나노구조를 형성하였다. 원자힘 현미경으로 관찰한 결과 이 나노구조의 밀도는 $3\times10^{10}/cm^2$였으며, 가로 크기는 40$\sim$60 nm 이고 높이는 약 15 nm 임을 알 수 있었다. 엑스선광전자 분광기술을 이용하여 이 나노구조의 화학상태를 측정하였는데, 입사하는 이온화된 $N_2$의 단위시간당 양이 증가함에 따라서 화학상태가 $SiN_x$에서 $Si_3N_4\;+\;SiN_x$형태로 변화함을 알 수 있었다. 열처리를 한 시료를 투과전자 현미경으로 측정된 결과는 $SiN_x$ 나노구조를 내부에 Si 나노 결정이 형성된 것을 보여주었다. 광여기 발광특성에서 관찰된 400 nm파장의 스펙트럼은 Si 나노결정의 크기를 고려할 때 나노결정과 $SiN_x$ 나노구조 사이의 계면상태에서 기인한 것으로 생각된다.

Ion Beam Modified ppolyimide: A Study of the Irradiation Effect

  • Lee, Y.S.;Lim, K.Y.;Chung, Y.D.;Lee, K.M.;Choi, B.S.;Whang, C.N.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1998년도 제14회 학술발표회 논문개요집
    • /
    • pp.132-132
    • /
    • 1998
  • Ion bombardment in the keV range is known to induce drastic chemical modifications in organic and inoranic molecular comppounds. A degrading effects in orgainc materials such as the release of ppolymer compponents and the chemistry of the iradiation pprocess have been observed. The work to be described was carried out in order to understand the irradiation effect better. The sampple(ppolyimide : Kappton ) Were irradiated by Ar+, Ne+, H+ ions and electrons (3 keV) to fluence ranging from ~1$\times$1015 to ~1$\times$1017 ions/$cm^2$ at room tempperature. The impplant was usually rastered over an area of a few $cm^2$ . These ion impplantation were carried out in an electron sppectrometer ESCA 5700 (ppHI Ltd) at a residual gas ppressure of ~5$\times$10-10 Torr. X-ray pphotoelectron sppectroscoppy(XppS) measurements were made using a monochromatized Al Ka(1486.6 eV) excitation source. The pphotoemitted electrons were detected by hemisppherical analyser with a ppass energy of 23.5 eV. Core-level binding energies were referenced to the Fermi level. To avoid the charging effect it was used the neutralizer. We studied the irradiation effects on ppolyimide with Ar+, Ne+, He+ ions and electrons by XppS which 추 pprovide detailed information concerning the bonding-induced changes.

  • PDF

Evaluation of dose distribution from 12C ion in radiation therapy by FLUKA code

  • Soltani-Nabipour, Jamshid;Khorshidi, Abdollah;Shojai, Faezeh;Khorami, Khazar
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2410-2414
    • /
    • 2020
  • Heavy ions have a high potential for destroying deep tumors that carry the highest dose at the peak of Bragg. The peak caused by a single-energy carbon beam is too narrow, which requires special measures for improvement. Here, carbon-12 (12C) ion with different energies has been used as a source for calculating the dose distribution in the water phantom, soft tissue and bone by the code of Monte Carlobased FLUKA code. By increasing the energy of the initial beam, the amount of absorbed dose at Bragg peak in all three targets decreased, but the trend for this reduction was less severe in bone. While the maximum absorbed dose per bone-mass unit in energy of 200 MeV/u was about 30% less than the maximum absorbed dose per unit mass of water or soft tissue, it was merely 2.4% less than soft tissue in 400 MeV/u. The simulation result showed a good agreement with experimental data at GSI Darmstadt facility of biophysics group by 0.15 cm average accuracy in Bragg peak positioning. From 200 to 400 MeV/u incident energy, the Bragg peak location increased about 18 cm in soft tissue. Correspondingly, the bone and soft tissue revealed a reduction dose ratio by 2.9 and 1.9. Induced neutrons did not contribute more than 1.8% to the total energy deposited in the water phantom. Also during 12C ion bombardment, secondary fragments showed 76% and 24% of primary 200 and 400 MeV/u, respectively, were present at the Bragg-peak position. The combined treatment of carbon ions with neutron or electron beams may be more effective in local dose delivery and also treating malignant tumors.

Floating potential에서 유도결합 플라즈마 식각에 의한 GaAs(100) 표면의 형태 변화 (Morphological Evolution of GaAs(100) Surfaces during Inductively Coupled Plasma Etching at Floating Potential)

  • 이상호
    • 한국진공학회지
    • /
    • 제16권1호
    • /
    • pp.15-22
    • /
    • 2007
  • $BCl_3-Cl_2$ 플라즈마에서 이온 강화 식각 시 source power에 따른GaAs(100)의 표면 형태 변화를 연구하였다. Floating potential에서는 이온 포격(bombardment)이 거의 없기 때문에, 화학적 반응에 의존한 순수한 습식 식각에 의해 나타나는 것과 같이 <110> 능선과 {111} facet으로 이루어진 표면이 관찰 되었다. 이러한 형태는 식각 시작후 1분 이내에 형성되기 시작하여 시간이 지남에 따라 커진다. 동일한 압력에서 source power를 변화시키면 식각된 표면이 다른 형태를 보인다. 100 W 정도의 낮은 source power에서는 결정학적 표면이 형성되지 않지만, 900 W 정도의 높은 source power에서는 결정학적 표면이 잘 형성된다. 이것은 건식 식각에 필수적인 여기된 반응성 물질의 양이 source power에 크게 좌우되기 때문이다. 높은 source power에서는 반응성 물질의 농도가 높아지고, 열역학적으로 가장 안정한 GaAs(100) 표면이 형성 된다. 반면에 반응성 물질이 부족할 경우에는 표면 형태는 sputtering에 의해 결정된다. Scaling theory에 기초한 표면의 통계적 분석 적용 시, 두개의 spatial exponent가 발견 되었다. 하나는 1 보다 작고 원자 수준의 표면형태 형성 기구에 의해 결정되고, 다른 하나는 1보다 크며 facet 형성 기구와 같이 큰 규모의 형태 형성 기구에 의한 결과로 생각된다.