Browse > Article
http://dx.doi.org/10.5757/JKVS.2007.16.1.015

Morphological Evolution of GaAs(100) Surfaces during Inductively Coupled Plasma Etching at Floating Potential  

Lee, Sang-Ho (Department of Materials Science and Engineering, University of California)
Publication Information
Journal of the Korean Vacuum Society / v.16, no.1, 2007 , pp. 15-22 More about this Journal
Abstract
We present the morphological evolution at different source powers in the ion-enhanced etching of GaAs(100) in $BCl_3-Cl_2$ plasma. With little ion bombardment at floating potential, the surface develops <110< ridges and {111} facets, as it does in purely chemical etching. The morphology develops in less than 1 minute and grows bigger over time. The etched surfaces show different morphologies at different source powers with constant pressures of gases. Lowe. source power (100 W) produces poorly developed crystallographic surfaces while higher source power (900 W) produces well developed crystallographic surfaces. This is attributed to the availability of excited reactive species(chlorine atoms) depending on source powers. With more concentration of the reactive species at higher source powers, the surface of GaAs(100) would be a surface that is expected from thermodynamics while the surface morphology would be determined by sputtering in the lack of reactive species. Statistical analysis of the surfaces, based on scaling theory, revealed two spatial exponents: one(smaller than one) is formed by atomic scale mechanisms, the other(larger than one) is formed by larger scale mechanisms which is believed to develop facets.
Keywords
Etching; Surface; GaAs; scaling theory;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H.F. Winters and J.W. Coburn, Surf. Sci. Rep. 14, 161 (1992)
2 T. Ohmi, K. Kotani, A. Teramoto, and M. Miyashita, IEEE Electron Device Lett. 12, 652 (1991)   DOI   ScienceOn
3 M. Saitou, M. Hokama, and W. Oshikawa, Appl. Surf. Sci. 185, 79 (2001)   DOI   ScienceOn
4 T. Ngo, E.J. Snyder, W.M. Tong, R.S. Williams, and M.S. Anderson, Surf. Sci. 314, L817 (1994)   DOI   ScienceOn
5 A.-L. Barabasi, and H.E. Stanley, Fractal concepts in Surface Growth, Cambridge University Press, 1995
6 D.W. Shaw, J. Crystal Growth 47, 509 (1979)   DOI   ScienceOn
7 M. Heyen and P. Balk, J. Crystal Growth, 53, 558 (1981)   DOI   ScienceOn
8 M. Heyen and P. Balk, J. Crystal Growth, 53, 558 (1981)   DOI   ScienceOn
9 D.W. Shaw, J. Electrochem. Soc. 128, 874 (1981)   DOI   ScienceOn
10 L. Sha, R. Puthenkovilkam, Y.-S. Lin, and J.P. Chang J. Vac. Sci. Tech. B 21, 2420 (2003)   DOI   ScienceOn
11 B. Chapman, Glow Discharge Processes: Sputtering and Plasma Etching, (John Wiley and Sons, New York, 1980)
12 H.P. Gillis, 'Etching and Deposition,' in John Moore and Nicholas Spencer (eds.) Encylopedia of Chemical Physics and Physical Chemistry, (Institute of Physics, Philadelphia, PA, 2001). Chapter 2.18, pp. 2613-2630
13 K.K. Ko, K. Kamath, O. Zia, E. Berg, S.W. Pang, and P. Bhattacharya, J. Vac. Sci. Tech. B 13, 2709 (1995)
14 Z. Maktadir, K. Sato, A. Mastumuro, K. Kayukawa, and M. Shikida, Mat. Res. Soc. Symp. Proc. 605, 305 (2000)
15 T. Ngo, E.J. Snyder, W.M. Tong, R.S. Williams, and M.S. Anderson, Surf. Sci. 314, L817 (1994)   DOI   ScienceOn
16 E.A. Eklund, R. Bruinsma, J. Rudnick, and R.S. Williams, Phy. Rev. Lett. 67, 1759 (1991)   DOI   ScienceOn
17 Wafer Technology Ltd. (UK)에서 구매
18 C.C. Chen, K.V. Guinn, V.M. Donnelly, and I.P. Herman, J. Vac. Sci. Tech. A 12, 2630 (1994)   DOI   ScienceOn
19 E. Hu and C.H. Chen, Microelectronic Engineering 35, 23 (1997)   DOI   ScienceOn
20 W.M. Tong and R.S. Williams, Annu. Rev. Phys. Chem. 45, 401 (1994)   DOI   ScienceOn
21 D.W.Shaw, J. Electrochem. Soc. 128, 874 (1981)   DOI   ScienceOn
22 D.J. Whitehouse, Meas. Sci. Technol. 8, 955 (1997)   DOI   ScienceOn
23 H.P. Gillis, D.A. Choutov, K.P. Martin, and Li Song, Appl. Phys. Lett., 68, 2255 (1996)   DOI   ScienceOn
24 D.W. Shaw, J. Crystal Growth 47, 509 (1979)   DOI   ScienceOn
25 D.E. Ibbotson, D. L. Flamm, and V.M. Donnelly, J. Appl. Phys. 54, 5974 (1983)   DOI   ScienceOn
26 C. Steinbruchel, Appl. Phys. Lett. 55, 1960 (1989)   DOI
27 H.P. Gillis et al., Appl. Phys. Lett. 68, 2255 (1996)   DOI   ScienceOn
28 J.W. Coburn and H.F. Winters, J. Appl. Phys. 50, 3189 (1979)   DOI   ScienceOn
29 M.E.R. Dotto and M.U. Kleinke, Physica A 295, 149 (2001)   DOI   ScienceOn