• Title/Summary/Keyword: IoT Sensors

Search Result 500, Processing Time 0.138 seconds

IoT Collaboration System Based on Edge Computing for Smart Livestock System (스마트 축사를 위한 에지 컴퓨팅 기반 IoT 협업 시스템)

  • Ahn, Chi-Hyun;Lee, Hyungtak;Chung, Kwangsue
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.258-264
    • /
    • 2022
  • The smart farm for livestock, in which information and communication technology (ICT) is combined with livestock farm, is mostly based on the cloud computing paradigm. A cloud-based smart livestock farm has disadvantages such as increased response time, burden on cloud resource caused by the increased number of IoT sensors, traffic burden on the network, and lack of failure resilience mechanisms through collaboration with adjacent IoT devices. In this paper, with these problems in mind, we propose an IoT collaboration system based on edge computing. By using the relatively limited computing resources of the edge device to share the cloud's web server function, we aim to reduce the cloud's resources needed and improve response time to user requests. In addition, through the heartbeat-based failure recovery mechanism, IoT device failures were detected and appropriate measures were taken.

Development of IIoT Edge Middleware System for Smart Services (스마트서비스를 위한 경량형 IIoT Edge 미들웨어 시스템 개발)

  • Lee, Han;Hwang, Joon Suk;Kang, Dae Hyun;Jeong, Seok Chan
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.115-125
    • /
    • 2021
  • Due to various ICT Technology innovations and Digital Transformation, the Internet of Things(IoT) environment is increasingly requiring intelligence, decentralization, and automated service, especially an advanced and stable smart service environment in the Industrial Internet of Things(IIoT) where communication network(5G), data analysis and artificial intelligence(AI), and digital twin technology are combined. In this study, we propose IIoT Edge middleware systems for flexible interface with heterogeneous devices such as facilities and sensors at various industrial sites and for quick and stable data collection and processing.

A Study on Fire Alarm Test of IoT Multi-Fire Detector combined Smoke/CO and Smoke/Temperature Sensors (연기/CO 및 연기/열 복합형 IoT 멀티 화재 감지기의 화재감지실험 연구)

  • Son, Geun­Sik;So, Soo­Hyun
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.2
    • /
    • pp.236-244
    • /
    • 2021
  • Purpose: The purpose of this study is to develop IoT multi-fire detectors combined smoke/carbon monoxide/heat and wireless IoT communication and to confirm the detect performance by smoke generator fire test and cotton wicks fire test. Method: The IoT multi-fire detector combined smoke and CO and combined smoke and heat were experimented the detect performance by smoke generator test and fire test of cotton wicks. And the case of fire alarm was checked. Result: The IoT multi-fire detector combined smoke and CO rung the alarm at the fire test of cotton wicks, did not ring the alarm at the smoke generator test. In comparison, the IoT multi-fire detector combined smoke and heat did not ring the alarm both at the smoke generator test and the fire test of cotton wicks. Conclusion: The IoT multi-fire detector combined smoke and CO detected the only smoke including the carbon monoxide and the IoT multi-fire detector combined smoke and heat did not ring the alarm for lack of heat. As a result, when the developed IoT multi-fire detector was detected the signal more than the set point, the fire alarm was sounded through cotton wicks fire test and smoke generator.

Development of a Slope Condition Analysis System using IoT Sensors and AI Camera (IoT 센서와 AI 카메라를 융합한 급경사지 상태 분석 시스템 개발)

  • Seungjoo Lee;Kiyen Jeong;Taehoon Lee;YoungSeok Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.43-52
    • /
    • 2024
  • Recent abnormal climate conditions have increased the risk of slope collapses, which frequently result in significant loss of life and property due to the absence of early prediction and warning dissemination. In this paper, we develop a slope condition analysis system using IoT sensors and AI-based camera to assess the condition of slopes. To develop the system, we conducted hardware and firmware design for measurement sensors considering the ground conditions of slopes, designed AI-based image analysis algorithms, and developed prediction and warning solutions and systems. We aimed to minimize errors in sensor data through the integration of IoT sensor data and AI camera image analysis, ultimately enhancing the reliability of the data. Additionally, we evaluated the accuracy (reliability) by applying it to actual slopes. As a result, sensor measurement errors were maintained within 0.1°, and the data transmission rate exceeded 95%. Moreover, the AI-based image analysis system demonstrated nighttime partial recognition rates of over 99%, indicating excellent performance even in low-light conditions. Through this research, it is anticipated that the analysis of slope conditions and smart maintenance management in various fields of Social Overhead Capital (SOC) facilities can be applied.

Development of Composite Sensing Technology Using Internet of Things (IoT) for LID Facility Management (LID 시설 관리를 위한 사물인터넷(IoT) 활용 복합 센싱 적용기술 개발)

  • Lee, Seungjae;Jeon, Minsu;Lee, Jungmin;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.22 no.4
    • /
    • pp.312-320
    • /
    • 2020
  • Various LIDs with natural water circulation function are applied to reduce urban environmental problems and environmental impact of development projects. However, excessive Infiltration and evaporation of LID facilities dry the LID internal soil, thus reducing plant and microbial activity and reducing environmental re duction ability. The purpose of this study was to develop a real-time measurement system with complex sensors to derive the management plan of LID facilities. The test of measurable sensors and Internet of Things (IoT) application was conducted in artificial wetlands shaped in acrylic boxes. The applied sensors were intended to be built at a low cost considering the distributed LID and were based on Arduino and Raspberry Pi, which are relatively inexpensive and commercialized. In addition, the goal was to develop complex sensor measurements to analyze the current state o f LID facilities and the effects of maintenance and abnormal weather conditions. Sensors are required to measure wind direction, wind speed, rainfall, carbon dioxide, Micro-dust, temperature and humidity, acidity, and location information in real time. Data collection devices, storage server programs, and operation programs for PC and mobile devices were developed to collect, transmit and check the results of measured data from applied sensors. The measurements obtained through each sensor are passed through the Wifi module to the management server and stored on the database server in real time. Analysis of the four-month measurement result values conducted in this study confirmed the stability and applicability of ICT technology application to LID facilities. Real-time measured values are found to be able to utilize big data to evaluate the functions of LID facilities and derive maintenance measures.

Design and Implementation of Hospital Room Management System Based on IoT CareBots (IoT 케어봇 기반 병실 관리 시스템의 설계 및 구현)

  • Jo, Sang-Young;Jeong, Jin-Woo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.370-378
    • /
    • 2018
  • Recent advances in network infrastructures, sensors, and IoT devices have accelerated the research and development of monitoring and interaction technologies designed for people, buildings, and environments. In particular, there has been an increasing demand for monitoring technologies for vulnerable people such as the infirm, disabled, and children. In this paper, we propose an efficient hospital room management system based on IoT care robots. The status of hospital rooms can be monitored and controlled more efficiently and intuitively by utilizing IoT devices and a cloud platform. We demonstrated the feasibility of the proposed system through the implementation of a prototype based on ARTIK IoT devices and the ARTIK Cloud platform. We found that the proposed system requires approximately 600 ms and 130 ms to collect sensor data and respond to alerts, respectively, which demonstrates it can operate in real-time.

A Study on the Development and Testing of Ringer Injection IoT System (링거 주입 IoT 시스템 개발 및 시험에 관한 연구)

  • Cho, Chung-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.787-796
    • /
    • 2019
  • In this paper, we propose the design and test measure of Ringer injection IoT system for controling the ringer injection status and notifying the server system of the collected status informations such as the completion of injection, the remaining liquid, the injection status, and the emergency alarming of the urgent patients. We design the circuit diagrams composed of linger injection sensors, switches, status indicators, wireless communication functionalities, and propose the controlling and monitoring algorithms for sensing the linger injection status and notifying the collected status informations to a server system. Furthermore, we derive the testing criteria, such as linger liquid sensing time, sensing distance, operating temperature, input power, power consumption, and wireless communication speed, and analyze the test results.

Development of Wireless Communication Educational Equipment for Internet of Things (IoT) (사물인터넷(IoT)을 위한 무선통신 교육장비 개발)

  • Kim, Han-jong
    • Journal of Practical Engineering Education
    • /
    • v.13 no.2
    • /
    • pp.321-326
    • /
    • 2021
  • Wireless communication is a core technology constituting the Internet of Things (IoT), but there is no suitable educational equipment to learn various wireless communication technologies used in the Internet of Things through practice. This paper deals with the development of advanced education and training equipment that can perform various IoT wireless communication practices. It uses an Arduino mega board as a device to control various sensors. As wireless network technologies to send and receive the sensing date wirelessly, it makes use of RFID/NFC and Bluetooth among WPAN technologies, WiFi among WLAN technologies and LoRa and 2.4GHz wireless transceiver among WWAN technologies. In addition, GPS, infrared communication, I2C communication, and SPI communication are organized so that various IoT wireless communication technologies can be learned through practice. In addition, since the educational equipment developed in this paper is equipped with two devices, it is designed to perform transmission and reception experiments for wireless network technology within the equipment.

Home IoT Sensor System for Prevent Safety Accidents in Single-person Household (1인 가구 안전사고 예방을 위한 Home IoT 센서 시스템)

  • Baek, Chang-Dae;Kim, Han-Ho;Cha, Hyun-Seok;Son, Hyeong-Min;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.397-399
    • /
    • 2021
  • The increase in single-person households and the development of Home IoT technology make it important to improve the convenience of the residential environment. In addition, the increase in indoor activities caused by COVID-19 calls for the development of products to make life more convenient for single-person households. This trend of increased indoor activity has made it easier to interact with the current residential environment than before, and as a result, the need to develop technology for Home IoT is emerging. Therefore, the Home IoT system will be developed to monitor the information needed to maintain an ideal indoor environment such as temperature, humidity, and fine dust. The system will also interact with users, and propose a system that improves safety in indoor activities by equipping the home with IoT sensors for preventing safety accidents such as gas leakage and fire.

  • PDF

Device Personalization Methods for Enhancing Packet Delay in Small-cells based Internet of Things (스몰셀 기반 사물인터넷에서 패킷 지연시간 향상을 위한 디바이스 개인화 방법)

  • Lee, ByungBog;Han, Wang Seok;Kim, Se-Jin
    • Journal of Internet Computing and Services
    • /
    • v.17 no.6
    • /
    • pp.25-31
    • /
    • 2016
  • Recently, with greatly improving the wireless communication technology, new services are created using smart sensors, i.e., machine-to-machine (M2M) and Internet of Things (IoT). In this paper, we propose a novel IoT device (IoTD) personalization method that adopt Small-cell Access Points (SAPs) to control IoTDs using user equipments (UEs), e.g., smart phones and tablet PC, from service users. First, we introduce a system architecture that consists of UE, IoTD, and SAP and propose the IoTD personalization method with two procedures, i.e., IoTD profile registration procedure and IoTD control procedure. Finally, through simulations, we evaluated the system performance of the proposed scheme and it is shown that the proposed scheme outperforms the conventional scheme in terms of the packet delay, packet loss probability, and normalized throughput.