DOI QR코드

DOI QR Code

Development of Composite Sensing Technology Using Internet of Things (IoT) for LID Facility Management

LID 시설 관리를 위한 사물인터넷(IoT) 활용 복합 센싱 적용기술 개발

  • Lee, Seungjae (Department Civil and Environmental Engineering, Kongju National University) ;
  • Jeon, Minsu (Department Civil and Environmental Engineering, Kongju National University) ;
  • Lee, Jungmin (Department Construction Environment Research, Land & Housing Institute) ;
  • Kim, Lee-Hyung (Department Civil and Environmental Engineering, Kongju National University)
  • 이승재 (공주대학교 건설환경공학과) ;
  • 전민수 (공주대학교 건설환경공학과) ;
  • 이정민 (토지주택연구원 건설환경연구실) ;
  • 김이형 (공주대학교 건설환경공학과)
  • Received : 2020.10.20
  • Accepted : 2020.11.12
  • Published : 2020.11.30

Abstract

Various LIDs with natural water circulation function are applied to reduce urban environmental problems and environmental impact of development projects. However, excessive Infiltration and evaporation of LID facilities dry the LID internal soil, thus reducing plant and microbial activity and reducing environmental re duction ability. The purpose of this study was to develop a real-time measurement system with complex sensors to derive the management plan of LID facilities. The test of measurable sensors and Internet of Things (IoT) application was conducted in artificial wetlands shaped in acrylic boxes. The applied sensors were intended to be built at a low cost considering the distributed LID and were based on Arduino and Raspberry Pi, which are relatively inexpensive and commercialized. In addition, the goal was to develop complex sensor measurements to analyze the current state o f LID facilities and the effects of maintenance and abnormal weather conditions. Sensors are required to measure wind direction, wind speed, rainfall, carbon dioxide, Micro-dust, temperature and humidity, acidity, and location information in real time. Data collection devices, storage server programs, and operation programs for PC and mobile devices were developed to collect, transmit and check the results of measured data from applied sensors. The measurements obtained through each sensor are passed through the Wifi module to the management server and stored on the database server in real time. Analysis of the four-month measurement result values conducted in this study confirmed the stability and applicability of ICT technology application to LID facilities. Real-time measured values are found to be able to utilize big data to evaluate the functions of LID facilities and derive maintenance measures.

도시 환경문제 및 개발사업 환경영향 저감을 위하여 자연적 물 순환 기능을 가진 다양한 LID가 적용되고 있다. 그러나 LID 시설의 과도한 침투와 증발산은 LID 내부 토양을 건조화시켜 식물과 미생물 활동성을 떨어뜨리고 환경저감 능력을 감소시킨다. 본 연구는 LID 시설의 관리 방안을 도출하기 위하여 복합적인 센서를 적용한 실시간 측정 시스템을 개발하고자 하였다. 측정 가능한 센서와 사물인터넷(IoT) 적용 실험은 아크릴 상자에 형상화한 인공습지에서 수행되었다. 적용되는 센서는 분산형으로 설치되는 LID를 고려하여 저비용으로 구축하고자 하였으며 비교적 저렴하면서 상용화되어있는 아두이노와 라즈베리 파이를 기반으로 하였다. 그리고 LID 시설의 현재 상태와 유지관리 및 이상기후 시 영향을 분석하기 위해 복합적인 센서 측정 개발에 목표를 두었다. 센서는 풍향·풍속, 강우량, 이산화탄소, 미세먼지, 온도·습도, 산성도, 위치 정보 등을 실시간으로 측정하도록 하였다. 또한 측정된 데이터의 수집, 전송 및 결과 확인을 위하여 데이터 수집 장치, 저장 서버 프로그램 및 PC와 모바일 활용 결과 확인 프로그램을 개발하였다. 각 센서를 통해 얻은 측정값들은 Wifi 모듈을 통해 관리 서버로 전달되고 실시간으로 데이터베이스 서버에 저장된다. 본 연구에서 수행한 4개월간의 측정 결과를 분석한 결과 LID 시설에 ICT 기술 적용의 안정성과 적용 가능성을 확인하였다. 실시간으로 측정된 값은 LID 시설의 기능 평가 및 유지관리 방안 도출을 위한 빅데이터 활용이 가능한 것으로 나타났다.

Keywords

References

  1. Airkorea. http://www.airkorea.co.kr/stationinfo
  2. Arduino web site, https://www.arduino.cc/
  3. Choi, H.S, Jeon, J.C, Hong J.S, Lee, S.Y and, Kim, L.H (2016), Assessment of Salt Resistance and Performances of LID Applicable Plants. J. of Wetlands Research, 18(2), pp. 201-207. https://doi.org/10.17663/JWR.2016.18.2.201
  4. Jeon, J.C, Junh, J.H, Kim, Y.S and, Kim, L.H (2018), A Review of Research Trend Related to NPS and Suggestion for Research Direction in the Future. J. of Wetlands Research, 20(1), pp. 80-93. https://doi.org/10.17663/JWR.2018.20.1.080
  5. Kim, L.H and Kang, J.H (2004), Determination of Event Mean Concentrations and Pollutant Loadings in Highway Storm Runoff. J. of Korean Society on Water Environment, 20(6), pp. 631-640.
  6. Kim, L.H, Lee, S.Y, and Min, K.S (2008). The 21st sustainable environmental policies for protecting the water quality and aquatic rcosystems. J. of Wetlands Research, 10(2), pp. 53-66.
  7. KMA, https://www.weather.go.kr/
  8. Kim, T.Y, Lee, Y.S (2017), Development of Remote Control and Monitoring System Using Raspberry Pi and Verification of System through HILS, J. Institute of Control, Robotics and Systems, 23(11) pp. 927-934 https://doi.org/10.5302/J.ICROS.2017.17.0155
  9. Lee, S.Y, Choi, J.Y, Hong, J.S Choi, H.S and Kim, L.H (2016). Cost-effective assessment of filter media for treating stormwater runoff in LID facilities, J. of Wetlands Research, 18(2), pp. 194-200. https://doi.org/10.17663/JWR.2016.18.2.194
  10. Lee, S.Y, Maniquiz-Redillas, MC, Choi, J.Y, and Kim, L.H (2014). Nitrogen mass balance in a constructed wetland treating piggery wastewater effluent, J. of Environmental Sciences, 26(6), pp. 1260-1266. https://doi.org/10.1016/S1001-0742(13)60597-5
  11. Maniquiz-Redillas, MC, and Kim, L.H (2014). Fractionation of heavy metals in runoff and discharge of a stormwater management system and its implications for treatment, J. of Environmental Sciences, 26(6), pp. 1214-1222. https://doi.org/10.1016/S1001-0742(13)60591-4
  12. MOE (Ministry of Environment) (2012). The 2nd Phase NPS Management Measures, Ministry of Environment, Korea.
  13. US EPA, (2000), Low impact development(LID), A literature review. United States Environmental Protection Agency, EPA-841-B00-005.
  14. Yoo M.S (2018), Development of experimental water level measuring device using an Arduino and an ultrasonic sensor, Journal of The Institute of Internet, Broadcasting and Communication, 18(4), pp.143-147 https://doi.org/10.7236/JIIBC.2018.18.4.143
  15. Massimo Banzi, and Michael Shiloh (2014), "Getting Started with Arduino: The Open Source Electronics Prototyping Platform (Make)", 3rd Edition, Maker Media, Inc., pp. 15-24