• Title/Summary/Keyword: Inverter sizing

Search Result 11, Processing Time 0.022 seconds

A Study on the Photovoltaic System Inverter Sizing (태양광발전시스템 인버터 용량 산정에 관한 연구)

  • Lee, Kyung-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.804-810
    • /
    • 2016
  • Photovoltaic system construction of the module capacity in domestic is specified criteria to less than 105% of the inverter capacity. However, the modules are installed in the outdoor actual output is reduced due to factors such as the irradiation intensity, module surface temperature. Thus, it needs the capacity of the inverter to be designed according to the actual module output. In this paper, the first approach to find the actual module output is to analyze the actual PV system monitoring data. Next, four sites where the loss analysis, system utilization, inverter utilization, and the ratio of the inverter overload are performed using PVSYST software. By changing the ratio of the module capacity, the inverter capacity of the site B is confirmed 20% less than the module capacity. Site A, C, D are identified as the ratio of the inverter capacity is 10% less than the module capacity.

Type-2 Fuzzy Logic Optimum PV/inverter Sizing Ratio for Grid-connected PV Systems: Application to Selected Algerian Locations

  • Makhloufi, S.;Abdessemed, R.
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.731-741
    • /
    • 2011
  • Conventional methodologies (empirical, analytical, numerical, hybrid, etc.) for sizing photovoltaic (PV) systems cannot be used when the relevant meteorological data are not available. To overcome this situation, modern methods based on artificial intelligence techniques have been developed for sizing the PV systems. In the present study, the optimum PV/inverter sizing ratio for grid-connected PV systems with orientation due south and inclination angles of $45^{\circ}$ and $60^{\circ}$ in selected Algerian locations was determined in terms of total system output using type-2 fuzzy logic. Because measured data for the locations chosen were not available, a year of synthetic hourly meteorological data for each location generated by the PVSYST software was used in the simulation.

A Study on Analysis and Design of HVC Embedded High Frequency Transformer for Microwave Oven (Inverter 구동 Microwave Oven용 HVC 내장형 고주파변압기의 해석 및 설계에 관한 연구)

  • Park, K.H.;Cho, J.S.;Mok, H.S.;Choe, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.293-296
    • /
    • 2001
  • A conventional power supply to drive a microwave oven has ferro-resonant transformer and high voltage capacitor(HVC). Though it is simple, transformer is bulky, heavy and has low-efficiency. To improve this defect, a high frequency inverter type power supply has been investigated and developed in recent years. But, because of additional control circuit and switching device, inverter-type power supply is more expensive than conventional one. In this study, The design procedure of a novel HVC embedded high frequency transformer is proposed for down-sizing and cost reduction of Inverter-type power supply. Also, equivalent circuit mode] is derived by FEM analysis and impedance measurements. And the operation of proposed HVC embedded transformer is verified by simulations and experimental results.

  • PDF

Research of Optimal PV Module Matching Method for New Large Scale Inverter Development (새로운 대용량 인버터의 개발을 위한 최적 모듈 매칭 방법에 관한 연구)

  • Cha, Min-young
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.275-276
    • /
    • 2011
  • 본 논문에서는 일사량 및 표면온도에 따라 변화하는 태양전지의 출력 특성을 고려하여 설치되는 태양광 발전 인버터의 운전 허용 범위에 대해 살펴본다. 또한 대용량 발전 시 직렬 모듈 수를 높이는 구성과 기존 센트럴 인버터의 최소 MPP 전압의 증가에 대한 효율성을 검증하기 위해 (주)카코 뉴에너지에서 제공하는 PV Array Sizing Tool과 Matlab Simulink를 통해 태양전지 어레이의 동작 범위를 파악하고, 새로운 대용량 인버터 개발 원리의 타당성을 제시한다.

  • PDF

A Study on Analysis and Design of HVC Embedded High Frequency Transformer for Microwave Oven (Microwave Oven용 커패시터 내장형 고주파변압기의 해석 및 설계에 관한 연구)

  • 박강희
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.90-94
    • /
    • 2000
  • A conventional power supply to drive a microwave oven has ferro-resonant transformer and high voltage capacitor(HVC). Though it is simple transformer is bulky heavy and has low-efficiency. To improve this defect a high frequency switching inverter-type power supply has been investigated an developed. in recent years. But because of it's additional circuit and devices inverter-type power supply is more expensive than conventional one. In this paper The design procedure of a novel HVC embedded high frequency transformer is proposed for down-sizing and cost reduction. Also transformer equivalent circuit model is derived by FEM analysis and parameter measurements. And the operation of proposed HVC embedded transformer is verified by simulation and experimental results.

  • PDF

A Study on Pulse Power Suppuy for Microwave Oven Using HVC Embedded High Frequency Transformer (HVC 내장형 고주파변압기를 이용한 Microwave Oven용 펄스전원장치에 관한 연구)

  • Park K.H.;Cho J.S.;Jung B.H.;Mok H.S.;Park H.B.
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.584-588
    • /
    • 2001
  • A conventional power supply to drive a microwave oven has ferro-resonant transformer and high voltage Capacitor(HVC). Though it is simple, transformer is bulky, heavy and has low-efficiency. To improve this defect a high frequency inverter type power supply has been investigated and developed in recent years. But, because of additional control circuit and switching device, inverter-type power supply is more expensive than conventional one. In this study, A new pulse power supply for Microwave Oven using novel HVC embedded high frequency transformer is proposed for down-sizing, cost reduction, and efficiency emprovement of Inverter type power supply. Also, equivalent circuit model is derived by impedance measurements. And the operation of proposed pulse power supply is verified by simulations and experimental results.

  • PDF

Design Considerations for a Distributed Generation System Using a Voltage-Controlled Voltage Source Inverter

  • Ko, Sung-Hun;Lee, Su-Won;Lee, Seong-Ryong;Naya, Chemmangot V.;won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.643-653
    • /
    • 2009
  • Voltage-controlled voltage source inverter (VCVSI) based distributed generation systems (DGS) using renewable energy sources (RES) is becoming increasingly popular as grid support systems in both remote isolated grids as well as end of rural distribution lines. In VCVSI based DGS for load voltage stabilization, the power angle between the VCVSI output voltage and the grid is an important design parameter because it affects not only the power flow and the power factor of the grid but also the capacity of the grid, the sizing of the decoupling inductor and the VCVSI. In this paper, the steady state modeling and analysis in terms of power flow and power demand of the each component in the system at the different values of maximum power angle is presented. System design considerations are examined for various load and grid conditions. Experimental results conducted on a I KVA VCVSI based DGS prove the analysis and simulation results.

Efficiency Improvement of Microwave Oven Using a Pulse Power Supply Embedded HVC-High Frequency Transformer (HVC-고주파변압기 내장형 펄스전원장치를 이용한 Microwave Oven의 효율 향상)

  • 정병환;조준석;강병희;목형수;최규하
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.3
    • /
    • pp.180-187
    • /
    • 2004
  • A conventional power supply of a microwave oven has a 60Hz transformer and high voltage capacitor(HVC). Though it is very simple and has low cost, it has several problems such as large size, heavy weight and low efficiency To improve these problems, various high frequency inverter type power supply have been investigated and developed in recent years. But these cost is higher than the conventional one due to additional control circuit, fast switching devces. In this paper, a novel pulse power supply for microwave oven using high frequency transformer embedded HVC(High Voltage Capacitor) is proposed for down-sizing, cost reduction and efficient improvement. To verify the effectiveness of the proposed transformer, an equivalent circuit of transformer embedded HVC is derived and it's characteristic is described. And the validity of the proposed pulse power supply embedded HVC-high frequency transformer is shown by simulations and experiments accroding to various operating conditions.

A Study on Novel Power Supply for Microwave Oven Using HVC Embedded High Frequency Transformer

  • Cho Jun-Seok;Park Kang-Hee;Jeong Byung-Hwan;Mok Hyung-Soo
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.581-585
    • /
    • 2001
  • This paper describes novel high voltage capacitor(HVC) embedded high frequency transformer and novel inverter power supply topology for driving magnetron in microwave oven. This transformer is used to achieve down­sizing, low-cost and efficiency improvement. Proposed transformer has HVC in its secondary winding. Therefore, this transformer does not need external high voltage capacitor which used in conventional power supply. As use of this transformer, output voltage is shifted from ground to above 2000[V] and efficiency of microwave oven can be improved. The weight of proposed transformer is about one sixth of conventional one and efficiency is improved by seven percent compared to the efficiency of the conventional system.

  • PDF

An Enhanced Architecture of CMOS Phase Frequency Detector to Increase the Detection Range

  • Thomas, Aby;Vanathi, P.T.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.198-201
    • /
    • 2014
  • The phase frequency detector (PFD) is one of the most important building blocks of a phase locked Loop (PLL). Due to blind-zone problem, the detection range of the PFD is low. The blind zone of a PFD directly depends upon the reset time of the PFD and the pre-charge time of the internal nodes of the PFD. Taking these two parameters into consideration, a PFD is designed to achieve a small blind zone closer to the limit imposed by process-voltage-temperature variations. In this paper an enhanced architecture is proposed for dynamic logic PFD to minimize the blind-zone problem. The techniques used are inverter sizing, transistor reordering and use of pre-charge transistors. The PFD is implemented in 180 nm technology with supply voltage of 1.8 V.