• 제목/요약/키워드: Inverter Filter

검색결과 529건 처리시간 0.025초

Enhanced Controller Topology for Photovoltaic Sourced Grid Connected Inverters under Unbalanced Nonlinear Loading

  • Sivakumar, P.;Arutchelvi, Meenakshi Sundaram
    • Journal of Power Electronics
    • /
    • 제14권2호
    • /
    • pp.369-382
    • /
    • 2014
  • A growing dynamic electrical demand has created an increasing interest in utilizing nonconventional energy sources like Photovoltaic (PV), wind power, etc. In this context, this paper focuses on the design and development of a composite power controller (CPC) in the decoupled double synchronous reference frame (DDSRF) combining the advantages of direct power control (DPC) and voltage oriented control (VOC) for a PV sourced grid connected inverter. In addition, a controller with the inherent active filter configuration is tested with nonlinear and unbalanced loads at the point of common coupling in both grid connected and autonomous modes of operation. Furthermore, the loss and reactive power compensation due to a non-fundamental component is also incorporated in the design, and the developed DDSRF model subsequently allows independent active and reactive power control. The proposed developed model of the controller is also implemented using MATLAB-Simulink-ISE and a Xilinx system generator which evaluate both the simulated and experimental setups. The simulation and experimental results confirm the validity of the developed model. Further, simulation results for the DPC are also presented and compared with the proposed CPC to further bring out the salient features of the proposed work.

LCL 필터를 사용하는 삼상 전압형 인버터의 모델링과 계통전류 제어 (Modeling and Line Current Control of a Three Phase Voltage Source Inverter using an LCL filter in a Balanced Delta Circuit)

  • 이상인;이귀준;현동석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 추계학술대회 논문집
    • /
    • pp.18-20
    • /
    • 2007
  • 3상 계통 연계 형 인버터 시스템은 낮은 THD를 가지는 계통 전류를 공급해주기 위해 LCL 필터를 사용한다. LCL 필터를 사용하는 가장 큰 장점은 낮은 스위칭 주파수에서도 만족할 만한 수준의 THD를 가지는 계통 전류를 생성시킬 수 있다는 점이다. 반면에, 단점은 LCL필터를 포함하는 계통 연계 형 인버터 시스템의 전달함수에 하나의 공진 극점이 존재한다는 점이다. 이것은 계통 전류 제어 loop에서, 안정성 문제에 영향을 미친다. 정확한 제어를 위해서 시스템의 전달함수는 필수적이다. 여기서 중요한 점은 많은 저자들이 시뮬레이션과 실험을 할 때, 중성점이 없는 회로에서 행하지만 회로 해석을 할 때에는 중성점이 있는 회로에서 해석을 한다는 점이다. 그래서 우리는 등가 델타회로에서 LCL 필터를 포함한 전체 시스템의 수학적인 모델을 제안한다. 이 모델은 모든 인덕터와 커패시터의 기생 저항을 고려한다. 또한 이 논문은 계통 전류를 제어하기 위한 제어기의 해석적인 설계 절차를 포함한다. 제안한 수학적인 모델을 입증하기 위해, PSIM을 통한 시뮬레이션과 Simulink를 통한 시뮬레이션 결과를 비교하였다.

  • PDF

Stability Analysis and Improvement of the Capacitor Current Active Damping of the LCL Filters in Grid-Connected Applications

  • Xu, Jinming;Xie, Shaojun;Zhang, Binfeng
    • Journal of Power Electronics
    • /
    • 제16권4호
    • /
    • pp.1565-1577
    • /
    • 2016
  • For grid-connected LCL-filtered inverters, dual-loop current control with an inner-loop active damping (AD) based on capacitor current feedback is generally used for the sake of current quality. However, existing studies on capacitor current feedback AD with a control delay do not reveal the mathematical relation among the dual-loop stability, capacitor current feedback factor, delay time and LCL parameters. The robustness was not investigated through mathematical derivations. Thus, this paper aims to provide a systematic study of dual-loop current control in a digitally-controlled inverter. At first, the stable region of the inner-loop AD is derived. Then, the dual-loop stability and robustness are analyzed by mathematical derivations when the inner-loop AD is stable and unstable. Robust design principles for the inner-loop AD feedback factor and the outer-loop current controller are derived. Most importantly, ensuring the stability of the inner-loop AD is critical for achieving high robustness against a large grid impedance. Then, several improved approaches are proposed and synthesized. The limitations and benefits of all of the approaches are identified to help engineers apply capacitor current feedback AD in practice.

음향 공명 제거 및 과도 상태 전류를 제한시킨 고출력 메탈 헬라이드 램프용 전자식 안정기 설계 (The Electronic Ballast Design of Acoustic Resonance Free and Transient Over Current Limit for High Power MHL)

  • 김기남;박종연;최영민
    • 전기학회논문지
    • /
    • 제59권5호
    • /
    • pp.904-911
    • /
    • 2010
  • This paper presents the design of acoustic resonance free and over current limit during transient state consideration electronic ballast for 1.5kW Metal-Halide Lamp(MHL) that employs frequency modulation (FM) technique. The proposed ballast consists of a Full-Bridge(FB) rectifier, a passive power factor correction (PFC) circuit, a full-bridge inverter, an ignitor using LC resonance and a control circuit for frequency modulation. The frequency modulation technique is the most effective solution to eliminate acoustic resonance among other technique. It spreads power spectrum of lamp to reduce the supplied power spectrum under the energy level of eigen-value frequency. Moreover, the proposed ballast is simple and cost effective above conventional ballast. A new PFC circuit is proposed which combines with LCD type and PCSR filter. A new PFC circuit has higher PF and lower THD than conventional LCD type and secure high reliability. Finally, to protected switching components in transient state, the surge current into ballast is limited by increase the switching frequency. Performance of the proposed ballast was validated through computer simulation using Pspice, experimentation and by applying it to an electronic ballast for a prototype 1.5kW MHL.

전원사고 시 3상 계통연계 인버터의 전원 전압 고속 검출 방법 (High Speed Grid Voltage Detection Method for 3 Phase Grid-Connected Inverter during Grid Faults)

  • 최형진;송승호;정승기;최주엽;최익
    • 한국태양에너지학회 논문집
    • /
    • 제29권5호
    • /
    • pp.65-72
    • /
    • 2009
  • The new method is proposed to improve high speed detection of grid voltage phase and magnitude during a voltage dip due to a grid faults. Usually, A LPF(Low Pass Filter) is used in the feedback loop of PLL (Phase Locked Loop) system because the measured grid voltage contains harmonic distortions and sensor noises. so, a new design method of the loop gain of the PI -type controller in the PLL system is proposed with the consideration of the dynamics of the LPF. As a result, a better transient response can be obtained with the proposed design method. The LPF frequency and PI controller gain are designed in coordination according to the steady state and dynamic performance requirement. This paper shows the feasibility and the usefulness of the proposed methods through the computer simulation and the lab-scale experiments.

Low Cost and High Performance UPQC with Four-Switch Three-Phase Inverters

  • Trinh, Quoc-Nam;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1015-1024
    • /
    • 2015
  • This paper introduces a low cost, high efficiency, high performance three-phase unified power quality conditioner (UPQC) by using four-switch three-phase inverters (FSTPIs) and an extra capacitor in the shunt active power filter (APF) side of the UPQC. In the proposed UPQC, both shunt and series APFs are developed by using FSTPIs so that the number of switching devices is reduced from twelve to eight devices. In addition, by inserting an additional capacitor in series with the shunt APF, the DC-link voltage in the proposed UPQC can also be greatly reduced. As a result, the system cost and power loss of the proposed UPQC is significantly minimized thanks to the use of a smaller number of power switches with a lower rating voltage without degrading the compensation performance of the UPQC. Design of passive components for the proposed UPQC to achieve a good performance is presented in detail. In addition, comparisons on power loss, overall system efficiency, compensation performance between the proposed UPQC and the traditional one are also determined in this paper. Simulation and experimental studies are performed to verify the validity of the proposed topology.

캐패시터리스 인버터의 입력 전류 공진 억제 (Resonance Suppression Control of Input Current for Capacitorless Inverter)

  • 유안노;이학준;이욱진;설승기;;김선자;나승호;김정하
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.888-889
    • /
    • 2008
  • 본 논문은 직류단 전원(DC link)에 대용량의 전해 캐패시터(Electrolytic capacitor)를 사용하지 않는 전해 캐패시터리스 (Electrolytic-Capacitorless) 인버터의 입력 전류와 직류단 전원 공진(resonance) 억제에 대한 것이다. 직류단 전원의 순시적인 에너지원으로 사용되는 전해 캐패시터를 사용하지 않는 캐패시터리스 인버터는 기존의 인버터에 비해서 가격, 부피 면에서 장점을 가지지만, 직류단 전원의 캐패시터 용량이 작아서 부하 단 스위칭의 영향이 입력 전류에 직접적으로 나타나게 된다. 이에 따라서 캐패시터리스 인버터는 필연적으로 입력 단에 저역 통과 필터(Low Pass Filter : LPF)가 필요하다. 입력 단의 필터는 간단한 구조와 가격적 측면을 고려하여 LC 필터가 주로 사용되는데, LC필터는 직류단 전류에 의한 공진의 원인이 된다. 본 논문에서는 캐패시터리스 인버터의 입력 필터의 영향을 분석하여 입력 전류와 직류단 전압의 공진을 억제 할 수 있는 방법을 제시하고, 실험 결과를 통하여 제안된 방법의 유효성을 확인한다.

  • PDF

Development of a Unified Research Platform for Plug-In Hybrid Electrical Vehicle Integration Analysis Utilizing the Power Hardware-in-the-Loop Concept

  • Edrington, Chris S.;Vodyakho, Oleg;Hacker, Brian A.
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.471-478
    • /
    • 2011
  • This paper addresses the establishment of a kVA-range plug-in hybrid electrical vehicle (PHEV) integration test platform and associated issues. Advancements in battery and power electronic technology, hybrid vehicles are becoming increasingly dependent on the electrical energy provided by the batteries. Minimal or no support by the internal combustion engine may result in the vehicle being occasionally unable to recharge the batteries during highly dynamic driving that occurs in urban areas. The inability to sustain its own energy source creates a situation where the vehicle must connect to the electrical grid in order to recharge its batteries. The effects of a large penetration of electric vehicles connected into the grid are still relatively unknown. This paper presents a novel methodology that will be utilized to study the effects of PHEV charging at the sub-transmission level. The proposed test platform utilizes the power hardware-in-the-loop (PHIL) concept in conjunction with high-fidelity PHEV energy system simulation models. The battery, in particular, is simulated utilizing a real-time digital simulator ($RTDS^{TM}$) which generates appropriate control commands to a power electronics-based voltage amplifier that interfaces via a LC-LC-type filter to a power grid. In addition, the PHEV impact is evaluated via another power electronic converter controlled through $dSPACE^{TM}$, a rapid control systems prototyping software.

Deadbeat Control with a Repetitive Predictor for Three-Level Active Power Filters

  • He, Yingjie;Liu, Jinjun;Tang, Jian;Wang, Zhaoan;Zou, Yunping
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.583-590
    • /
    • 2011
  • Three-level NPC inverters have been put into practical use for years especially in high voltage high power grids. This paper researches three-level active power filters (APFs). In this paper a mathematical model in the d-q coordinates is presented for 3-phase 3-wire NPC APFs. The deadbeat control scheme is obtained by using state equations. Canceling the delay of one sampling period and providing the predictive value of the harmonic current is a key problem of the deadbeat control. Based on this deadbeat control, the predictive output current value is obtained by the state observer. The delay of one sampling period is remedied in this digital control system by the state observer. The predictive harmonic command current value is obtained by the repetitive predictor synchronously. The repetitive predictor can achieve a better prediction of the harmonic current with the same sampling frequency, thus improving the overall performance of the system. The experiment results indicate that the steady-state accuracy and the dynamic response are both satisfying when the proposed control scheme is implemented.

DSP를 이용한 엑티브 필터 기능 추가형 태양광발전시스템의 운전특성에 관한 연구 (A Study on PV Power Generation System Adding the Function of Shunt Active Filler Using DSP)

  • 서효룡;박영길;김종현;박민원;유인근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.1169-1170
    • /
    • 2006
  • Grid connected PV(Photovoltic) generation systems are becoming and actual and general. The power output of PV system is directly affected by the weather conditions. And when AC power supply is needed, power conversion by an inverter and a MPPT control are necessary. The PV power generation system can be treated to a harmonics source for the power distribution system. So, the PV system combined the function of active filter system can be useful applied in power distribution system. AF(Active Filters) intended for harmonic solutions are expending their functions from harmonic compensation of nonlinear loads into harmonic isolation between utilities and consumer. With the test analysis of the proposed control strategy of PV-AF system, the outcome of the test shows the stability and effectiveness of the proposed PV-AF system. The various capability of AF has been proved in previous research and usage. In this paper, authors present a DSP controlled PV-AF system for power conditioning in three-phase industrial or commercial power systems and verify it through experimental results.

  • PDF