• Title/Summary/Keyword: Inverted Pendulum System

Search Result 326, Processing Time 0.022 seconds

Sliding Mode Control with Sliding Sector for Chattering Reduction (채터링 감소를 위한 슬라이딩 섹터를 갖은 슬라이딩 제어)

  • Han, Jong-Kil;Son, Yong-Su
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.3
    • /
    • pp.168-173
    • /
    • 2007
  • Chattering phenomenon is still a large drawback of VSS. To overcome this problem, various approaches have been reported. A new notion of sliding sector has been proposed recently. In this paper, new methods of the nonlinear system control using the sliding sector theory with continued input function in the sector is proposed. This paper analyzes the stability, using Lyapunov function on the sliding sector. computer simulation for inverted pendulum results in elimination of the chattering phenomenon.

  • PDF

Development of a Modified Random Signal-based Learning using Simulated Annealing

  • Han, Chang-Wook;Lee, Yeunghak
    • Journal of Multimedia Information System
    • /
    • v.2 no.1
    • /
    • pp.179-186
    • /
    • 2015
  • This paper describes the application of a simulated annealing to a random signal-based learning. The simulated annealing is used to generate the reinforcement signal which is used in the random signal-based learning. Random signal-based learning is similar to the reinforcement learning of neural network. It is poor at hill-climbing, whereas simulated annealing has an ability of probabilistic hill-climbing. Therefore, hybridizing a random signal-based learning with the simulated annealing can produce better performance than before. The validity of the proposed algorithm is confirmed by applying it to two different examples. One is finding the minimum of the nonlinear function. And the other is the optimization of fuzzy control rules using inverted pendulum.

The Hybrid Fuzzy Controller using the Hybrid Auto-tuning Algorithm (하이브리드 자동 동조 알고리즘을 이용한 하이브리드 퍼지 제어기)

  • Lee, Dae-Keun;Kim, Joong-Young;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.521-523
    • /
    • 1999
  • In this paper, we propose the hybrid fuzzy controller(HFC) and the hybrid auto-tuning algorithm. The proposed HFC combined a PID controller with a fuzzy controller concurrently produces the better output performance such as sensitivity improvement in steady state and robustness in transient state than any other controller. In addition, a hybrid auto-tuning algorithm which consists of genetic algorithm and complex algorithm to automatically generate weighting factor, scaling factors and PID control gains optimizes the output of HFC. As an typical example of non-linear system in control theory an inverted pendulum will be controlled by the suggested HFC and illustrated the performance and applicability of this proposed method by simulation.

  • PDF

A Study on Control of Inverted Pendulum Using Real-Time Vision System (실시간 비전 시스템을 이용한 도립진자제어에 관한 연구)

  • Park, Jong-Gyu;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.579-581
    • /
    • 1999
  • 본 논문에서는 컴퓨터의 정보처리 능력과 시각기능인 CCD 카메라의 영상처리 능력을 결합시켜 극한 상황에서도 실제 시스템을 효과적으로 제어할 수 있는 실시간 비전시각 제어시스템을 제안하고, 이를 대표적인 벤치마컴 시스템인 도립진자 시스템에 적용하여 실증하였다. 우선, 전용화 된 하드웨어를 사용하지 않고. 컴퓨터를 직접 사용하므로 영상처리 중에 발생하는 많은 데이터에서 필요한 정보를 신속하게 획득하고 처리할 수 있는 새로운 알고리즘을 제안하고 이를 시뮬레이션을 통하여 검증하였다. 또한, 실제 비전 제어시스템을 제작하고, 제안된 알고리즘을 비선형 도립진자의 제어에 적용하여 퍼지 제어기를 설계하므로 컴퓨터를 이용한 실시간 비전 시각 영상처리 제어의 가능성과 우수성을 입증하였다.

  • PDF

Design of a Variable Structure Controller Using Nonlinear Fuzzy Sliding Surfaces (비선형 퍼지 슬라이딩면을 이용한 가변구조 제어기의 설계)

  • 이희진;손홍엽;김은태;조영환;박민용
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.449-452
    • /
    • 1997
  • In this paper, we suggest a variable structure controller using the time-varying nonlinear sliding surface instead of the fixed sliding surface, which has been the robustness against parameter variations and extraneous disturbance during the reaching phase. As appling TS fuzzy algorithm to the regulation of the nonlinear sliding surface, the reaching time of the system trajectory is faster than the fixed method . This proposed scheme has better performance than the conventional method in reaching time parameter variation and extraneous disturbance. To demonstrate its performance, the proposed control algorithm is applied to a rotational inverted pendulum.

  • PDF

The Design Methodology of Fuzzy Controller by Means of Evolutionary Computing and Fuzzy-Set based Neural Networks

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.438-441
    • /
    • 2004
  • In this study, we introduce a noble neurogenetic approach to the design of fuzzy controller. The design procedure dwells on the use of Computational Intelligence (CI), namely genetic algorithms and Fuzzy-Set based Neural Networks (FSNN). The crux of the design methodology is based on the selection and determination of optimal values of the scaling factors of the fuzzy controllers, which are essential to the entire optimization process. First, the tuning of the scaling factors of the fuzzy controller is carried out by using GAs, and then the development of a nonlinear mapping for the scaling factors is realized by using GA based FSNN. The developed approach is applied to a nonlinear system such as an inverted pendulum where we show the results of comprehensive numerical studies and carry out a detailed comparative analysis.

  • PDF

Design of A Robust two-degree-of-freedom Controller for An Inverted Pendulum System (도립진자 시스템에 적용한 강건한 2-자유도 제어기 설계)

  • Ahn, Soo-Joong;Lee, Sang-Chuel;Cho, Do-Hyeoun;Lee, Jong-Yong;Park, Jong-Woo;Lee, Sang-Hyo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.847-849
    • /
    • 1999
  • 본 논문에서는 도립 진자 시스템에 대하여 모델의 불확실성에도 불구하고 수레의 위치가 기준 입력을 추종하는 강건한 2-자유도(two degree of freedom) 제어기를 설계한다. 도립 진자 시스템의 모델 불확실성은 기약 분해 불확실성으로 고려하고, 기준 입력 추종 성능은 도립 진자 시스템의 수레 위치가 원하는 기준 위치로 추종하는 문제를 고려한다. 이러한 강건 안정화와 기준입력 추종사이의 절충 문제를 해결하기 위해서 2-자유도 제어기를 설계한다. 2-자유도 제어기는 프리필터와 피드백 제어기로 구성된다. 설계 절차에 따라 얻어진 제어기는 모의 실험을 통해 그 성능을 확인한다.

  • PDF

Design of a Variable Structure Controller with Nonlinear Fuzzy Sliding Surgaces (비선형 퍼지 슬라이딩면을 갖는 가변 구조 제어기의 설계)

  • 이희진;강형진;김정환;박민용
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.5
    • /
    • pp.21-28
    • /
    • 1998
  • This study develops a variable structure controller using the time-varying nonlinear sliding surface instead of the fixed sliding surface, which has been the robustness against parameter variations and extraneous disturbance during the reaching phase. By appling TS fuzzy algorithm to the regulation of the rionlinear sliding surface, the reaching time of the system trajectory is faster than the fixed method. This proposed scheme has better performance than the conventional method in reaching time, parameter variation and extraneous disturbance. To demonstrate its performance, the proposed control algorithm is applied to a rotational inverted pendulum.

  • PDF

Control of Unstable Systems Concerned with the Performance Indexes and Constraints (성능지수와 제약조건을 고려한 불안정 시스템의 제어)

  • Ahn, Jong-Kap;Lee, Yun-Hung;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.785-790
    • /
    • 2008
  • A technique for determining the feedback gain of the states feedback controller using a real-coded genetic algorithm(RCGA) is presented. It is concerned with the states error to the performance index of a RCGA. As for assessing the performance of the controller three performance criteria (ISE. IAE and ITAE) are adopted. And designing the controller involves a constrained optimization problem. Therefore a real-coded genetic algorithm incorporating the penalty strategy is used. The performance of the proposed method is demonstrated through a set of simulation about an inverted pendulum system.

Quadruped Walking Control of DRC-HUBO (DRC 휴보의 4족 보행 제어)

  • Kim, Jung-Yup
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.548-552
    • /
    • 2015
  • In this paper, we describe the quadruped walking-control algorithm of the complete full-size humanoid DARPA Robotics Challenge-HUBO (DRC-HUBO) robot. Although DRC-HUBO is a biped robot, we require a quadruped walking function using two legs and two arms to overcome uneven terrains in the DRC. We design a wave-type quadruped walking pattern as a feedforward control using several walking parameters, and we design zero moment point (ZMP) controllers to maintain stable walking using an inverted pendulum model and an observed-state feedback control scheme. In particular, we propose a switching algorithm for ZMP controllers using supporting value and weighting factors in order to maintain the ZMP control performance during foot switching. Finally, we verify the proposed algorithm by performing quadruped walking experiments using DRC-HUBO.