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Abstract

In this study, we introduce a noble neurogenetic approach to the design of fuzzy controller.
The design procedure dwells on the use of Computational Intelligence (CI), namely genetic
algorithms and Fuzzy-Set based Neural Networks (FSNN). The crux of the design
methodology is based on the selection and determination of optimal values of the scaling
factors of the fuzzy controllers, which are essential to the entire optimization process. First,
the tuning of the scaling factors of the fuzzy controller is carried out by using GAs, and
then the development of a nonlinear mapping for the scaling factors is realized by using
GA based FSNN. The developed approach is applied to a nonlinear system such as an
inverted pendulum where we show the results of comprehensive numerical studies and

carry out a detailed comparative analysis.

1. Introduction

The intent of this study is to develop,
optimize and experiment with the fuzzy
controllers when developing a general design
scheme of Computational Intelligence. One of
the difficulties in the construction of the fuzzy
controller is to derive a set of optimal control
parameters of the controller such as linguistic
control rules, scaling factors, and membership
functions of the fuzzy controller{7,8]. Genetic
algorithms (GAs) can be used to find the
optimal control parameters. However,
evolutionary computing is computationally
intensive and this may be a point of concern
when dealing with amount of time available to
such search. For instance, when controlling a
nonlinear plant such as an inverted pendulum
of which initial states vary in each case, the
search time required by GAs could be
prohibitively high when dealing with dynamic
systems. As a consequence, the parameters of
the fuzzy controller cannot be easily adapted

to the changing initial states of this system
such as an angular position and an angular
velocity of the pendulum. To alleviate this
shortcoming, we introduce a nonlinear mapping
such as HCM-LMS tandem based polynomial.
The development process consists of two main
phases. First, using genetic optimization we
determine optimal parameters of the fuzzy
controller for various initial states (conditions).
Second, we build up a nonlinear model that
captures a relationship between the initial
states of the system and the corresponding
genetically optimized control parameters.

2. Fuzzy PID Controller
The block diagram of fuzzy PID controlier

is shown in Figure 1

Figure 1. An overall architecture of the fuzzy PID
controller
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The adove fuzzy PID cortrdler casists of rdles of the fam
[anal

R :if Eis Ay and 4E is Ay and £E is Ay then U is D)
Tre caitdl letters standing in the nde (B) dete fuzzy
variaies (linguistic terrms) whereas D is a numeric value
(singleton) of the control action In each control rule, a
level of its activation is computed in a standard fashion
(1). The inferred value of consequence part is converted
into numeric values with the aid of (2-1)[11].

w;= min{ p, (E) , pg(E) , uc(LE)} ()

4UT = 2 wD./ w, @D

uk) =UKK)IXGC 2-2

We use triangular membership functions defined in
the input and output spaces.

the

3 Auto—tuning of fuzzy

controller by GAs

Geretic algorithms (GAs) are the search algorithms
inspired by Nature in the sense that we exploit a
fundamental concept of a survival of the fittest as
being encountered in selection mechanisms among
species. In GAs, the search variables are encoded in
bit strings called chromosomes. They deal with a
population of chromosomes with each representing a
possible solution for a given problem A chromosome
has a fitness value that indicates how good a solution
remesented by it is. In control applications, the
chromosome  represents  the ocontrollers  adjustable
parameters and fitness value is a quantitative measure
of the performance of the controller. In general, the
population size, a number of bhits used for binary
coding, crossover rate, and mutation rate are specified
in advance. The genetic search is guded by a
reproduction, mutation, and crossover. Each of these
phases comes with a set of specific numeric
parameters characterizing the phase. In this study, the
number of generations is set to 100, crossover rate is
equal to 06, while the mutation rate is taken as 0.1
The number of hits used in the coding is equal to 10.
Let us recall that this involves tuning of the scaling
factors and a construction of the control rules. These
are genetically optimized. We set the initial individuals
of GAs using three types of parameter estimation
modes sich as a basic mode, contraction mode and
expansion mode. In the case of a basic mode (BMD,
we use scaling parameters that normelize ervor
between reference and output, one  level
difference and two level error difference by [-1, 1] for

€ror

the initial individuals in the GA. In a contraction mode
(CM), we use scaling parameters reduced by 25% in
relation to the basic mode. While in the expansion
mode (EM), we use scaling parameters enlarged by
%% from a basic mode. The standard ITAE expressed
for the reference and the output of the system under
control is treated as a fitness function (21,

The design procedure  consists of the following steps
[step 1] Select the general structre of the fuzy
contrdler acoording o the papose of oconfrd  and
dynamics of the process In particular, we oonsider
architectural aptians. (PID, FPDRuzzy PD), and FPID (Fuzzy
PID) controller)

[step 2] Define the murber of fuzzy sets for each
variable and set up initial contral nules, refer to Figure 2
ad 3

[step 3] Fom a cdllection of initial individuals of GAs.
This invalves the following

1. set the initial individudls of GAs for the scaling factor
of fuzzy contrdler. The scaling factors can be described
as nammlized coeffidents. Each  scaling  factor  is
expressed by (3).

Figure 2 illustrates three types of estimation nodes of the
scaling factor being used in setting the inittal individuals

of GAs desaribing the fuzzy controlier.
E(KT) = error(kT )xGE (3.a)
AE(KT) = [error(kT ) - error(k ~ 1 )T ]xGD (3.b)
AE(kT) = [error(kT) — 2error(k ~ 1)T
+errork—2)T1xGH (3.c)
U(KT) = U(k— 1)T + 4U (kT )=xGC (3.d)

e Expansion Mode

¥
Contraction Mode
E, &E, &E

-
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Figure 2. Three types of estimation modes for the scaling
factors' basic, expansion, and contraction

[step 4] Here al the control perameters such as the
scaling factos GE GD, GH and GC are tuned at the
sare time.

4. HCM-LMS
polynomial model

tandem based

In this algorithm, we use HCM clustering
algorithm to classify the data and identify the
divided data on each cluster by means of LMS
method. We use a type of such polynomial as
(4), and estimate coefficients of the polynomial.
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W= Cy+ CHD+ CH(D* +-+C,0D"  (4)
Given a set of data X={x,%5, ", x,}, where

%,={%u,%g,""". X}, n is the number of data
and m is the number of variables[3]. Let P(X)
be the power set of X, that is, the set of all
the subsets of X. A hard c-partition of X is
the {AEP(X)1<i<d that

family such

,Q,A':X and ANA;=0 for 1<i#j<c. Each
A;i is viewed as a cluster, so {Ay,..Ad
partitions X into ¢ clusters. The hard
c-partition- can be reformulated through the

characteristic (membership) function of the
element xx in Ai. Specifically, define

ik ( 1’ xkEAi )

TN, 1,4, 5)

where x:€X, APX) i=12-n. Clearly, ui=1
means that Xx belongs to cluster Ai. Given the
value of ui, we can uniquely determine a hard
c-partition of X, and vice versa. The ui's
should satisfy the following three conditions:

uye0,1,1<i<c, 1<k<n (6)
Sua=1,Ves(1,2,, 7 7)
0¢ 3 ualn, Vis(1,2,, d ()

(6) and (7) together mean that each x<X
hould belong to one and only one cluster. {(8)
requires that each cluster Al must contain at
least one and at most n-1 data point.
Collecting uik with 1<i<c¢,1<k<n into a c by
n matrix U=[u*]. We obtain the matrix
representation for hard c-partition, defined as

follows.

MC={U| u,—,,EO,l, Zu,‘kzl,o(guﬂ?(”} (9)
Step 1 : Fix the number of clusters c(2<c{n)
and Initialize the partition matrix UVeM,

Step 2 Calculate the center vectors Vi of each
cluster :

Uf'r):{vﬂy Uy, ", (10)

Vs Vs

(N S (D Lo
vy = ;luikr * X/ /’Zluik'

where, [ux)= U™, i =1, 2 ¢ j=1, 2, "m.
Step 3 : Update the partition matrix U"; these
modifications are based on the standard
Euclidean distance function between the data
points and the prototypes

(11)

. 12
dyp=d(x,— v)=|lx,— vjl= [,Zi(x"’f_ vu)z] (12)
u(_r+1)=( 1

ik

dy’=min{d}’} for all j= c)
0 otherwise
Step 4 : Check a termination criterion.
If HU(r+l)_U(r)”$E
stop, otherwise set r =
step 2.

14)
r + 1 and return to

5. Simulation Study

The inverted pendulum system is composed of a rigid
pole and a cart on which the pole is hinged [4][5].
The cart moves on the rail tracks to its right or left,
depending on the force exerted on the cart. The pole
is hinged to the car through a frictionless free joint
such that it has only one degree of freedom The
control goal is to balance the pole starting from
nonzero conditions by supplying appropriate force to
the cart. In this study, the dynamics of the inverted
pendulum system are characterized by two state
variables: &angle of the pole with respect to the
vertical axis), ®(angular velocity of the pole).
The behavior of these two state variables is govemed
by the following second-order equation. The dynamic
equation of the inverted pendulum is shown as the
following.

e gsinf+ cos f —— L =E £ ’—n:n_:fnzsin 6 )
= 2
{4 -zet) 15)

Where g (acceleration due to gravity) is 98m/s2, nc
(mass of cart) is 1.0kg, m (mass of pole) is 0.5m, and
F is the applied force in newtons. Figure 3 shows
auto-tuned scaling factors according to the change of
mitial angle and angular velocity of the inverted
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Figure 3. Auto-tuned scaling factors according to the change
of initial angles (@) GE, (b} GD, (¢) GH and (d GC

Figure 4 daronstrates (a)pole angle (b)pole angular
velocity (C)state space of fuzzy PID controller for initial
angle=078(rad) and initial angular veloaty=078(rad/sec)
far each estimation algarithm respectively.
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6. Conclusions
In this paper, we have proposed a two-phase
optimization scheme of the fuzzy PID and PD
controllers. The parameters under optimization
concern scaling factors of the input and output
variables of the controller that are known to
exhibit an immense impact on its quality. The
first phase of the design of the controller uses
genetic computing that aims at the global
optimization of its scaling factors where they
are optimized with regard to a finite collection
of initial conditions of the system under
control. In the second phase, we construct a
mapping  between the initial
conditions of the system and the corresponding
values of the scaling factors. From the
simulation studies, using genetic optimization
by scaling factor estimation modes and the
estimation algorithm of the HCM-LMS tandem
based polynomial model, we showed that the

nonlinear

fuzzy PI/PID controller controls effectively the
inverted pendulum system. While the study
showed the development of the controller in
the experimental framework of control of a
specific dynamic system (inverted pendulum),
this methodology is general and can be
directly utilized to any other system. Similarly,
one can envision a number of modifications
that are worth investigating. For instance, a
design of systems exhibiting a significant level
of variability could benefit from the approach
pursued in this study.
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