• 제목/요약/키워드: Inverted Pendulum Model

Search Result 139, Processing Time 0.022 seconds

Robust Control for Rotational Inverted Pendulums Using Output Feedback Sliding Mode Controller and Disturbance Observer

  • Park, Jeong-Ju;Kim, Jong-Shik
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1466-1474
    • /
    • 2003
  • This paper presents a system modeling, controller design and implementation for a rotational inverted pendulum system (RIPS), which is an under-actuated system and has the problem of unattainable velocity state. Two control strategies are applied to the RIPS. One is a sliding mode control method using the parameterization of both the hyperplane and the compensator for output feedback. The other is the disturbance observer which estimates disturbance and some modeling errors of RIPS with less computational effort. Some simulations and various kinds of experiments are performed in order to verify that the proposed controller has the ability to control RIPS whose velocity is assumed to be unavailable. The results of the simulations and experiments show that the proposed control system has superior performance for disturbance rejection and regulation at certain initial conditions as well as the robustness to model uncertainties.

A Gait Implementation of a Biped Robot Based on Intelligent Algorithm (지능 알고리즘 기반의 이족 보행로봇의 보행 구현)

  • Kang Chan-Soo;Kim Jin-Geol;Noh Kyung-Kon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1210-1216
    • /
    • 2004
  • This paper deals with a human-like gait generation of a biped robot with a balancing weight of an inverted pendulum type by using genetic algorithm. The ZMP (Zero Moment Point) is the most important index in a biped robot's dynamic walking stability. To perform a stable walking of a biped robot, a balancing motion is required according to legs' trajectories and a desired ZMP trajectory. A dynamic equation of the balancing motion is nonlinear due to an inverted pendulum type's balancing weight. To solve the nonlinear equation by the FDM (Finite Difference Method), a linearized model of equation is proposed. And GA (Genetic Algorithm) is applied to optimize a human-like balancing motion of a biped robot. By genetic algorithm, the index of the balancing motion is efficiently optimized, and a dynamic walking stability is verified by the ZMP verification equation. These balancing motion are simulated and experimented with a real biped robot IWR-IV. This human-like gait generation will be applied to a humanoid robot, at future work.

Trajectory Generation for a Biped Robot Using ELIPM (ELIPM을 이용한 이족보행로봇의 궤적생성)

  • Park, Goun-Woo;Choi, See-Myoung;Park, Jong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.767-772
    • /
    • 2011
  • Trajectory generation is important because it determines the walking stability, continuity, and performance of a body in motion. Generally, the Linear Inverted Pendulum Mode is used for trajectory generation; however, for the sake of simplicity, the trajectory in this mode does not allow vertical motions and pitching motions of the body. This paper proposes a new trajectory generation method called Extended Linear Inverted Pendulum Mode (ELIPM) that allows vertical motion as well as pitching motion. This method can also improve the performance of locomotion by controlling the stride and locomotion frequency of a body.

A Smooth Trajectory Generation for an Inverted Pendulum Type Biped Robot (도립진자형 이족보행로봇의 유연한 궤적 생성)

  • Noh Kyung-Kon;Kong Jung-Shik;Kim Jin-Geol;Kang Chan-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.112-121
    • /
    • 2005
  • This paper is concerned with smooth trajectory generation of biped robot which has inverted pendulum type balancing weight. Genetic algorithm is used to generate the trajectory of the leg and balancing weight. Balancing trajectory can be determined by solving the second order differential equation under the condition that the reference ZMP (Zero moment point) is settled. Reference ZMP effect on gait pattern absolutely but the problem is how to determine the reference ZMP. Genetic algorithm can find optimal solution under the high order nonlinear situation. Optimal trajectory is generated when use genetic algorithm which has some genes and a fitness function. In this paper, minimization of balancing joints motion is used for the fitness function and set the weight factor of the two balancing joints at the fitness function. Inverted pendulum type balancing weight is very similar with human and this model can be used fur humanoid robot. Simulation results show ZMP trajectory and the walking experiment made on the real biped robot IWR-IV.

The Analysis of The Kalman Filter Noise Factor on The Inverted Pendulum (도립진자 모델에서 칼만 필터의 잡음인자 해석)

  • Kim, Hoon-Hak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.5
    • /
    • pp.13-21
    • /
    • 2010
  • The Optimal results of Kalman Filtering on the Inverted Pendulum System requires an effective factor such as the noise covariance matrix Q, the measurement noise covariance matrix R and the initial error covariance matrix $P_0$. We present a special case where the optimality of the filter is not destroyed and not sensitive to scaling of these covariance matrix because these factors are unknown or are known only approximately in the practical situation. Moreover, the error covariance matrices issued by this method predict errors in the state estimate consistent with the scaled covariance matrices and not the issued state estimates. Various results using the scalar gain $\delta$ are derived to described the relations among the three covariance matrices, Kalman Gain and the error covariance matrices. This paper is described as follows: Section III a brief overview of the Inverted Pendulum system. Section IV deals with the mathematical dynamic model of the system used for the computer simulation. Section V presents a various simulation results using the scalar gain.

Online Learning Control for Network-induced Time Delay Systems using Reset Control and Probabilistic Prediction Method (네트워크 기반 시간지연 시스템을 위한 리세트 제어 및 확률론적 예측기법을 이용한 온라인 학습제어시스템)

  • Cho, Hyun-Cheol;Sim, Kwang-Yeul;Lee, Kwon-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.929-938
    • /
    • 2009
  • This paper presents a novel control methodology for communication network based nonlinear systems with time delay nature. We construct a nominal nonlinear control law for representing a linear model and a reset control system which is aimed for corrective control strategy to compensate system error due to uncertain time delay through wireless communication network. Next, online neural control approach is proposed for overcoming nonstationary statistical nature in the network topology. Additionally, DBN (Dynamic Bayesian Network) technique is accomplished for modeling of its dynamics in terms of casuality, which is then utilized for estimating prediction of system output. We evaluate superiority and reliability of the proposed control approach through numerical simulation example in which a nonlinear inverted pendulum model is employed as a networked control system.

CMAC Learning Controller Implementation With Multiple Sampling Rate: An Inverted Pendulum Example (다중 샘플링 타임을 갖는 CMAC 학습 제어기 실현: 역진자 제어)

  • Lee, Byoung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.279-285
    • /
    • 2007
  • The objective of the research is two fold. The first is to design and propose a stable and robust learning control algorithm. The controller is CMAC Learning Controller which consists of a model-based controller, such as LQR or PID, as a reference control and a CMAC. The second objective is to implement a reference control and CMAC at two different sampling rates. Generally, a conventional controller is designed based on a mathematical plant model. However, increasing complexity of the plant and accuracy requirement on mathematical models nearly prohibits the application of the conventional controller design approach. To avoid inherent complexity and unavoidable uncertainty in modeling, biology mimetic methods have been developed. One of such attempts is Cerebellar Model Articulation Computer(CMAC) developed by Albus. CMAC has two main disadvantages. The first disadvantage of CMAC is increasing memory requirement with increasing number of input variables and with increasing accuracy demand. The memory needs can be solved with cheap memories due to recent development of new memory technology. The second disadvantage is a demand for processing powers which could be an obstacle especially when CMAC should be implemented in real-time. To overcome the disadvantages of CMAC, we propose CMAC learning controller with multiple sampling rates. With this approach a conventional controller which is a reference to CMAC at high enough sampling rate but CMAC runs at the processor's unoccupied time. To show efficiency of the proposed method, an inverted pendulum controller is designed and implemented. We also demonstrate it's possibility as an industrial control solution and robustness against a modeling uncertainty.

LMI Design of Multi-Objective$ Η_2/Η_\infty$Controllers for an Inverted Pendulum on the Cart Using Polytope Models (폴리토프 모델을 이용한 도립진자의 다목적$ Η_2/Η_\infty$ 제어기의 LMI 설계)

  • 이상철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.1
    • /
    • pp.6-13
    • /
    • 2002
  • This paper deals with the linear matrix inequality (LMI) design procedures for multi-objective Η$_2$$_{\infty}$ controllers with pole-placement constraints for an inverted pendulum system modeled as convex polytopes to ensure the stabilizing regulator and tracking performances. Polytopic models with multiple linear time-invariant models linearized at some operating points are derived to design controllers overcoming the conservativeness such as a controller may have when it is designed for a model linearized at a single operating point. Multi-objective controllers are designed for polytopic models by the LMT design technique with convex algorithms. It is observed that the inverted pendulum controlled by any controller designed for each polytopic model is stabilizingly restored to the vertical angle position for initial values of larger tilt anlges.

Stabilization Control of the Inverted Pendulum System by Hierarchical Fuzzy Inference Technique (계층적 퍼지추론기법에 의한 도립진자 시스템의 안정화 제어)

  • Lee, Joon-Tark;Chong, Hyeng-Hwan;Kim, Tae-Woo;Choi, Woo-Jin;Park, Chong-Hun;Kim, Hyeng-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1104-1106
    • /
    • 1996
  • In this paper, a hierarchical fuzzy controller is proposed for the stabilization control of the inverted pendulum system. The design of controller for that system is difficult because of its complicated nonlinear mathematical model with unknown parameters. Conventional fuzzy control strategy based only on dynamics of pendulum made have failed to stabilize. However, proposed control strategies are to swing pendulum from natural stable up equilibrium point to an unstable equilibrium point and are to transport a cart from an arbitrary position toward a center of rail. Thus, the proposed fuzzy stabilization controller have a hierarchical fuzzy inference structure; that is, the lower level is for inference interface for the virtual equilibrium point and the higher level one for the position control of cart according to the firstly inferred virtual equilibrium point.

  • PDF

Human-like Balancing Motion Generation based on Double Inverted Pendulum Model (더블 역 진자 모델을 이용한 사람과 같은 균형 유지 동작 생성 기술)

  • Hwang, Jaepyung;Suh, Il Hong
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.2
    • /
    • pp.239-247
    • /
    • 2017
  • The purpose of this study is to develop a motion generation technique based on a double inverted pendulum model (DIPM) that learns and reproduces humanoid robot (or virtual human) motions while keeping its balance in a pattern similar to a human. DIPM consists of a cart and two inverted pendulums, connected in a serial. Although the structure resembles human upper- and lower-body, the balancing motion in DIPM is different from the motion that human does. To do this, we use the motion capture data to obtain the reference motion to keep the balance in the existence of external force. By an optimization technique minimizing the difference between the motion of DIPM and the reference motion, control parameters of the proposed method were learned in advance. The learned control parameters are re-used for the control signal of DIPM as input of linear quadratic regulator that generates a similar motion pattern as the reference. In order to verify this, we use virtual human experiments were conducted to generate the motion that naturally balanced.