• Title/Summary/Keyword: Inversion & Eversion

Search Result 48, Processing Time 0.034 seconds

Therapy for Abnormality of Inversion and Eversion in Foot (발의 Inversion 과 Eversion의 이상 치료)

  • Shin, Kwang-Seong;Shin, Seong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.490-491
    • /
    • 2019
  • Inversion and Eversion of the foot means that the ankle is in a $90^{\circ}$ neutral position and bends to the inside and outside of the foot, respectively. The angle of the inversion of the foot is extremely normal from 20 to 35 degrees, and the angle of the ankle is 10 to 20 degrees. If the angle of foot Inversion and Eversion are below normal values or accompanied by sore pain, there is a problem.

  • PDF

A Study of Measurement Methods for Subtalar Joint Motion (목말밑관절 가동범위 측정방법에 관한 연구)

  • Kim, Gi-Won;Hong, Wan-Sung
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.4
    • /
    • pp.57-64
    • /
    • 2010
  • Purpose: This study aimed to determine whether there are differences in subtalar joint range of motion (ROM) when using different measurement methods, and to determine inter- and intra-rater reliability of goniometry as used in clinical setting. Methods: Subjects were thirty-one healthy males and females (sixty-two ankles) living in Korea. Three raters with different clinical experiences measured inversion and eversion range of motion of the subtalar joint two times. Measurements were done with subjects prone (open kinetic chain) and standing (closed kinetic chain). Rater and measurement methods were based on analyzing differences in range of motion. Intra-class correlation coefficients (ICCs) were calculated to determine intra-rater and inter-rater reliability. Results: Mean subtalar jont range of motion for inversion ranged from $9.31^{\circ}$ to $11.94^{\circ}$ for eversion, it ranged from $6.73^{\circ}$ to $9.20^{\circ}$. The differences in ROM between raters and between measurement methods were significant (p<0.01). The ICCs for interrater reliability ranged from $0.02^{\circ}$ to $0.20^{\circ}$ for inversion and from $0.23^{\circ}$ to $0.39^{\circ}$ for eversion. Intrarater reliability ranged from $0.32^{\circ}$ to $0.78^{\circ}$ for inversion and from $0.45^{\circ}$ to $0.73^{\circ}$ for eversion. Conclusion: Subtalar joint inversion and eversion ROM show differences for measurement methods low reliability between different raters, and low to high intra-rater reliability within sessions.

Leg Muscle Activity from the Perturbation of the Support during Gait (보행 시 지지 기반 급변에 대한 하지 근신경의 반응)

  • Shin, In-Sik;Chun, Young-Jin;Seo, Jung-Seok;Choi, Chi-Sun;Nam, Ki-Jung
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.147-154
    • /
    • 2007
  • This study's purpose is to investigate the effects on leg muscle activity caused by perturbation, using a trapdoor system during the support phase of gait for healthy adults (n = 6, height $177.5{\pm}5.5cm$, weight $81.0{\pm}9.5kg$, age $30.0{\pm}3.3yrs$). The trapdoor had the functional ability of causing inversion or eversion. The release time for the trapdoor was specified for two times, 0.3 and 0.5 seconds after heel contact. While altering these variables, EMG was recorded for the leg muscles (rectus femoris, biceps femoris, vastus lateralis, tibialis anterior, gastrocnemius, soleus). The following conclusions were derived. The steptime was longer for the 0.5s eversion than 0.3s inversion condition. So in order to regain stability after the perturbation the unsupporting leg reached forward rapidly. This quick reflex can be observed through the center of pressure (COP) and its rapid change in direction. The gastrocnemius was activated throughout the total experiment. There was a low amount of activity recorded in the rectus femoris, vastus lateralis and tibialis anterior except for the condition of inversion 0.3s. For most of the conditions, the highest average EMG peak values were recorded during the condition of inversion 0.3s. The iEMG patterns were similar for the conditions of inversion 0.3s and eversion 0.3s. To cope with the rapid change in these conditions, the biceps femoris was activated. During the experiment except for the condition of normal gait, the activity of the soleus and gastrocnemius was relatively high. Therefore, to prevent injury from perturbation of the lower leg strengthening of the soleus and gastrocnemius is required. Likewise to prevent injury to the thigh strengthening for the biceps femoris.

Analysis of the Lower Extremity's Coupling Angles During Forward and Backward Running (앞으로 달리기와 뒤로 달리기 시 하지 커플링각 분석)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.149-163
    • /
    • 2006
  • The purpose of this study was to compare the lower extremity's joint and segment coupling patterns between forward and backward running in subjects who were twelve healthy males. Three-dimensional kinematic data were collected with Qualisys system while subjects ran to forward and backward. The thigh internal/external rotation and tibia internal/external rotation, thigh flexion/extension and tibia flexion/extension, tibia internal/external rotation and foot inversion/eversion, knee internal/external rotation and ankle inversion/eversion, knee flexion/extension and ankle inversion/eversion, knee flexion/extension and ankle flexion/extension, and knee flexion/extension and tibia internal/external rotation coupling patterns were determined using a vector coding technique. The comparison for each coupling between forward and backward running were conducted using a dependent, two-tailed t-test at a significant level of .05 for the mean of each of five stride regions, midstance(1l-30%), toe-off(31-50%), swing acceleration(51-70%), swing deceleration(71-90), and heel-strike(91-10%), respectively. 1. The knee flexion/extension and ankle flexion/extension coupling pattern of both foreward and backward running over the stride was converged on a complete coordination. However, the ankle flexion/extension to knee flexion/extension was relatively greater at heel-strike in backward running compared with forward running. At the swing deceleration, backward running was dominantly led by the ankle flexion/extension, but forward running done by the knee flexion/extension. 2. The knee flexion/extension and ankle inversion/eversion coupling pattern for both running was also converged on a complete coordination. At the mid-stance. the ankle movement in the frontal plane was large during forward running, but the knee movement in the sagital plane was large during backward running and vice versa at the swing deceleration. 3. The knee flexion/extension and tibia internal/external rotation coupling while forward and backward run was also centered on the angle of 45 degrees, which indicate a complete coordination. However, tibia internal/external rotation dominated the knee flexion/extension at heel strike phase in forward running and vice versa in backward running. It was diametrically opposed to the swing deceleration for each running. 4. Both running was governed by the ankle movement in the frontal plane across the stride cycle within the knee internal/external rotation and tibia internal/external rotation. The knee internal/external rotation of backward running was greater than that of forward running at the swing deceleration. 5. The tibia internal/external rotation in coupling between the tibia internal/external rotation and foot inversion/eversion was relatively great compared with the foot inversion/eversion over a stride for both running. At heel strike, the tibia internal/external rotation of backward running was shown greater than that of forward(p<.05). 6. The thigh internal/external rotation took the lead for both running in the thigh internal/external rotation and tibia internal/external rotation coupling. In comparison of phase, the thigh internal/external rotation movement at the swing acceleration phase in backward running worked greater in comparison with forward running(p<.05). However, it was greater at the swing deceleration in forward running(p<.05). 7. With the exception of the swing deceleration phase in forward running, the tibia flexion/extension surpassed the thigh flexion/extension across the stride cycle in both running. Analysis of the specific stride phases revealed the forward running had greater tibia flexion/extension movement at the heel strike than backward running(p<.05). In addition, the thigh flexion/extension and tibia flexion/extension coupling displayed almost coordination at the heel strike phase in backward running. On the other hand the thigh flexion/extension of forward running at the swing deceleration phase was greater than the tibia flexion/extension, but it was opposite from backward running. In summary, coupling which were the knee flexion/extension and ankle flexion/extension, the knee flexion/extension and ankle inversion/eversion, the knee internal/external rotation and ankle inversion/eversion, the tibia internal/external rotation and foot inversion/eversion, the thigh internal/external rotation and tibia internal/external rotation, and the thigh flexion/extension and tibia flexion/extension patterns were most similar across the strike cycle in both running, but it showed that coupling patterns in the specific stride phases were different from average point of view between two running types.

Effects of Prolonged Running-Induced Fatigue on the Periodicity of Shank-Foot Segment Coupling and Free Torque

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.3
    • /
    • pp.257-264
    • /
    • 2016
  • Objective: The purpose of this study was to determine the periodicity of shank-foot segment coupling and free torque before and after fatigue induced by prolonged running. Method: Fifteen young healthy male participants with a rear-foot strike ran on instrumented dual-belt treadmills at 70% of their maximum oxygen uptake for 65 min. Kinematic and ground reaction force data were collected for 20 continuous strides at 5 and 65 min (considered the fatigued condition). The approximate entropy tool was applied to assess the periodicity of the shank internal-external rotation, foot inversion-eversion, shank-foot segment coupling, and free torque for the two running conditions. Results: The periodicity of all studied parameters, except foot inversion-eversion, decreased after 65 min of running (fatigued condition) for 80% of the participants in this study. Furthermore, 60% of the participants showed similarities in the change of periodicity pattern in shank internal-external rotation, coupling, and free torque. Conclusion: The findings indicated that the foot inversion-eversion motion may pose a higher risk of injury than the shank internal-external rotation, coupling, and free torque in the fatigued condition during prolonged running.

Effect of Foot Eversion on Knee and Ankle of Trans-tibial Amputees (인공의족의 외반 특성이 하퇴절단자의 무릎과 발목에 미치는 영향)

  • Bae, Tae-Soo;Chang, Yun-Hee;Kim, Shin-Ki;Mun, Mu-Seung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1505-1508
    • /
    • 2008
  • One of the important functions of prosthetic foot is the foot inversion-eversion which is so important when walking on uneven surfaces. The aim of our study was to evaluate the effect of foot eversion angle especially on knee and ankle joint for transtibial amputees by motion analysis. The experimental data were collected from three transtibial amputees and then ten healthy individuals. To simulate walking on side sloping ground, we used custom-made slope (5, 10, 15 degrees). Motion analysis was performed by 3-dimensional motion analyzer for 6 dynamic prosthetic feet. The results showed that knee abduction moments of amputated leg were decreased but those of sound leg were mainly increased as foot eversion angle increased. And ankle abduction moments of sound leg were inconsistent in magnitude and tendency between control and experimental group. Therefore foot eversioncharacteristics should be considered to develop advanced prosthetic foot.

  • PDF

Biomechanical Comparison of HG(hard ground) Soccer Footwear and SG(soft ground) Soccer Footwear (Hard Ground용 축구화와 Soft Ground용 축구화의 운동역학적 비교)

  • Jin, Young-Wan;Shin, Je-Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.75-83
    • /
    • 2006
  • The Purpose of this study was to compare the biomechanical difference of two soccer footwear. which will provide scientific data to coaches and players, to further prevent injuries and to improve each players skills. The result of this study can be summarized after testing the two types of soccer footwear with comparative transforming heel angles and also with a pressure distribution in running. When a player's foot first touched the ground, the average difference of in/eversion was between 1.2 and 3.1 degrees for the two soccer shoes. In regards to maximum inversion and eversion of foot, maximum tibial rotation, and maximum and total movement of foot, the condition of barefoot and the two soccer shoes showed a small difference from 1.5 to 3.5 degrees and the difference among the subjects of study wasn't constant. In regards to maximum velocity of inversion and eversion running in one's bare feet showed much lower inversion velocity in comparison to putting on two types of soccer shoes and comparison of the average. Among some of the subjects, after putting on the two types of soccer shoes exceeded $97^{\circ}/s$ in maximum velocity of eversion. In the maximum braking impulse(t=2774, p<.05) and propulsive impulse for antero-posterior direction, there was a statistically significant difference between the two soccer footwear at running. In the maximum braking force(t=3.270, p<.05) and propulsive force(t=4.956, p<.05) for antero-posterior direction, there was a statistically significant difference between the two soccer footwear at running.

Effects of Running Speed on the Foot Segments Motion at the Stance Phase (달리기 시 속도 증감에 따른 지지국면에서 발 분절 움직임 분석)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.1
    • /
    • pp.35-42
    • /
    • 2012
  • The aim of the present study was to investigate effect of running speed conditions on the kinematic pattern of the metatarsus, mid-foot, calcaneus. Twenty-two healthy young adults were made to run on treadmill at three different running speeds(normal speed, 9.2; slow speed, 7.4; fast speed, 11.1km/hr.) and the trajectories of the 10 reflective markers for each subject were recorded by an eight-camera motion capture system at 200 Hz. Three-dimensional angles for the foot segment in the support phase during running were calculated according to Euler's technique. Results showed that running speed did not affect the peak of the dorsi/plantar flexion, inversion/eversion, and adduction/abduction or their range of motion for each foot segment. However, when the running speed was fast, significant differences were found in the peak of the plantar flexion, eversion, and adduction and ROM(range of motion) of the dorsi/plantar flexion, inversion/eversion, and adduction/abduction between the foot segments, metatarsus, mid-foot, and calcaneus. It was proposed that the foot segment should be analyzed from a multi-segment system point of view on the basis of anatomical reference during locomotion.

Thearpy for The Inversion and Eversion of Foot (발의 안쪽 번짐과 가쪽 번짐 치료)

  • Yun, Sueyoung;Kim, Kwang;Shin, Seong-Yoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.07a
    • /
    • pp.338-339
    • /
    • 2017
  • 안쪽번짐과 가쪽번짐이란 발목을 $90^{\circ}$중립자세가 되게하고 발 안쪽면과 바깥쪽면으로 구부리는 것을 말한다. 안쪽번짐의 각은 $20{\sim}35^{\circ}$가 정상이고 가쪽번짐의 각은 $10{\sim}20^{\circ}$가 정상이다. 발의 안쪽번짐과 가쪽번짐의 각이 정상치에 미달하거나 고통을 호소하면 이상이 있는 것이다. 따라서 그에 알맞은 치료법도 제시한다.

  • PDF

Effect of Eversion Characteristics on Knee and Ankle Joint of Trans-tibial Amputees (인공의족의 외반 특성이 하퇴절단자의 무릎과 발목에 미치는 영향)

  • Bae, Tae-Soo;Chang, Yun-Hee;Kim, Shin-Ki;Mun, Mu-Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.886-891
    • /
    • 2009
  • One of the important functions of prosthetic foot is the foot inversion-eversion which is so important when walking on uneven surfaces. The aim of our study was to evaluate the effect of foot eversion angle especially on knee and ankle joint for transtibial amputees by motion analysis. The experimental data were collected from three transtibial amputees and then ten healthy individuals. To simulate walking on side sloping ground, we used custom-made slope (5, 10, 15 degrees). Motion analysis was performed by 3-dimensional motion analyzer for 6 dynamic prosthetic feet. The results showed that knee abduction moments of amputated leg were decreased but those of sound leg were mainly increased as foot eversion angle increased. And ankle abduction moments of sound leg were inconsistent in magnitude and tendency between control and experimental group. Therefore foot eversioncharacteristics should be considered to develop advanced prosthetic foot.